

CMS Experiment at the LHC, CERN Data recorded: 2016-Jul-07 12:00:20.388864 GMT Run / Event / LS: 276495 / 223808853 / 188

Searching for rare Higgs processes with the CMS detector

Irene Dutta (Caltech)

Rising Stars in Experimental Particle Physics Symposium

23 September 2021

The Higgs Boson

- Discovered by both ATLAS and CMS experiments in 2012
- Only scalar particle in the SM, can be represented as a SU(2) doublet

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

• Higgs field has a mexican hat potential (symmetric under rotations in Φ) $V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 \qquad \mu^2 < 0 \qquad \lambda > 0$

• Minimum not at
$$\langle \Phi \rangle = 0$$

 $\phi_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \quad v = \frac{|\mu|}{\sqrt{\lambda}}$

• V.E.V. or *v* ~246 GeV

The Higgs Boson

- Fluctuation around *v* breaks the rotational symmetry -Spontaneous symmetry breaking of the electro-weak vacuum
- Gauge Bosons in the SM acquire mass by electroweak symmetry breaking
- Fermions acquire masses through Yukawa couplings

The Higgs Boson properties

So what's next?

Some of the major unanswered questions are

- Yukawa couplings to second generation fermions (muon /charm quark)- any deviation from the SM can indicate the existence of an unknown BSM process!
- Higgs self-coupling crucial in understanding the shape of the scalar potential at higher scales

We will discuss both these topics in details in the next few slides

The Compact Muon Solenoid (CMS)

Higgs couplings to 2nd generation fermions

- H→cc has the largest BR, but also more background contamination
- H→µµ is currently the cleanest probe for second generation Yukawa coupling at the LHC

• BR(H
$$\rightarrow$$
µµ) ~2.15×10⁻⁴ for M_H = 125.38 GeV

- Mass peak resolution : 1.5~2.5 GeV
- Large background (dominated by Drell-Yan Z→µµ, electro-weak Z, others include top, diboson and triboson production) - S/B ~1/500 (very hard to find)!
- Most recent result from CMS: <u>JHEP 01(2021)148</u>
 - \circ 3 σ excess observed in data @ M_H = 125.38 GeV!!

Search strategy

- Two oppositely charged muons that are well isolated and have the largest sum p_T.
- Higgs-candidate M_{µµ}∈ [110, 150] GeV

VH (4% of H

cross section)

• Exploit different kinematic features of different production mechanisms

Events

Purity (S/S+B)

ttH (1% of H

cross section)

Event separation

Fit strategy

ggH

ttH

Train independent BDTs for each region

- Background modelled with discrete likelihood profile of physics inspired and empirical functions.
- Signal peak modelled with a Gaussian function with power-law tails on both sides
- Perform a parametric fit to M_{uu} spectrum

- Most sensitive category of this analysis
- Train a deep neural network
- Perform a simulation based template fit to DNN score output
- Personal contribution here: more on this in the next few slides

Template based VBF channel

- VBF $H \rightarrow \mu \mu$ events have distinct signature:
 - 125 GeV peak in dimuon invariant mass
 - Two forward high-p_T jets with high invariant mass
- Major backgrounds are Drell-Yan Z and electroweak production of Z

Drell Yan: Z/ $\gamma^* \rightarrow \mu \mu$

Electroweak production of Z+jj

VBF DNN

- Train a supervised machine learning classifier (a.k.a deep neural network or DNN)
- Signal and background predictions obtained from MC simulation
- Perform a MC template-based fit to the output score; Performance depends on
 - statistical power of background MC in signal region
 - data/MC agreement
- 20% improvement w.r.t. a data-driven fit approach

Input features of the DNN :

- Di-muon kinematics
- Di-muon mass and mass resolution
- Di-jet kinematics
- Individual jet kinematics
- Di-muon+Di-jet system kinematics

VBF fitting strategy

• Higgs sideband: $M_{uu} \in [110, 115] \text{ GeV } \cup [135, 150] \text{ GeV}$

Irene Dutta

Evidence of $H \rightarrow \mu \mu$

Irene Dutta

HL-LHC projections for $H \rightarrow \mu\mu$

- The HL-LHC will start in 2027 delivering about 3 ab⁻¹ of pp collision data at 14 TeV
 - $\circ \quad \text{Extreme pileup conditions} \rightarrow 200 \text{ concurrent} \\ \text{interactions every bunch crossing}$
- Several detector upgrades planned -
 - New tracker with coverage up to $|\eta|$ =4 and L1 track trigger $\sigma(M_{\mu\mu})$ improves by a factor of 2!
 - \circ Upgraded muon system with coverage up to $|\eta|{=}2.8$
 - New high granularity endcap calorimeter (HGCal)
- Precision H→µµ measurement! overall uncertainty constrained to ~4% (arXiV:1902.00134)

Improvements to $H \rightarrow \mu \mu$

- Increased acceptance of muons and improvement in muon p_T resolution
- VBF category: improved jet-energy-resolution and rejection of pileup jets in the endcap and forward region

Higgs self coupling

- V(H) = $m_h^2 h^2 / 2 + m_h^2 h^3 / 2v + m_h^2 h^4 / 2v^2$
- Higgs trilinear self coupling is $\lambda = m_h^2/2v$
- Important to study the trilinear coupling
 - probe the structure of the Higgs potential at large scales - metastability of the EW vacuum
 - EW phase transition in the primordial universe might be responsible for origin of matter anti-matter asymmetry

Higgs self coupling

- Two main leading order di-Higgs production diagrams:
 - Destructive interference
 - Smaller overall cross section
- During Run 2, the LHC produced :
 - 7.5 million single Higgs Bosons
 - 4500 Higgs Boson pairs

Lorentz boosted ggF HH→(bb)(bb)

- HH production cross section through ggF ~31 fb at 13 TeV at NNLO
- HH→(bb)(bb) has the highest branching ratio i.e.
 33.9 % of HH decay
- However very largely dominated by QCD multi-jet background and poor decay channel resolution
- Most studies target HH→(bb)(γγ) for better resolution and higher S/B (0.26 % of HH decay)
- To reduce background for HH→(bb)(bb) , explore the regime where both Higgs are boosted
 - Exploit jet sub-structures for better S/B

ParticleNet jet tagger for large radius jets

ParticleNet: A multi-class jet classifier for top, Higgs, W or Z tagging for large radius jets

- low-level jet information (collections of particles inside jet, secondary vertices from b-quark decays etc.) as inputs
- Dynamic Graph Convolutional Neural Networks (DGCNN) as ML architecture, details in <u>Phys. Rev.</u> <u>D 101, 056019</u>

ParticleNet-MD: The mass-decorrelated version

- Agnostic to the jet mass
- output scores: $X \rightarrow bb$, $X \rightarrow cc$, $X \rightarrow qq$, QCD

Analysis Strategy

- Major backgrounds : QCD and Top
- Design a Boosted Decision Tree (BDT): discriminate HH signal events from QCD and top quark background events. Inputs include:
 - Jet 1 kinematics
 - Dijet kinematics
- Define event categories optimized based on a 2D grid of BDT score and Jet 2 P_{xbb} score
- Use control regions (very little signal) to estimate background shapes in the final fit regions
- Fit the Mass of Jet 2 in all categories

Analysis is still under internal review - stay tuned for public results!

Future of HH

- Current existing best limit for HH : 3.6 (7.3) X SM Observed (Expected) in resolved HH→4b CMS analysis : <u>CMS-PAS-HIG-20-005</u>
 - The Boosted ggHH \rightarrow 4b results are competitive with these limits
 - Stay tuned for public results by end of 2021 /early 2022.

HL-LHC prospects for HH production

- Projected combined ATLAS +CMS expected significance at ~4σ (<u>CERN-LPCC-2018-04</u>)
- Can see further improvements from new analysis methods/ constraining systematics

Summary

- The Higgs Boson is a rather elusive particle
- Several of its properties are still not well understood
- Current and future colliders will help answer several open questions about the role of the Higgs in our universe

A giant eye for tiny particles

HIGGS DECAY CHANNELS

Table 11.4: The five principal decay channels for low mass SM Higgs boson searches at the LHC. The numbers reported are for $m_H = 125 \text{ GeV}$.

Decay channel	Mass resolution	
$H ightarrow \gamma \gamma$	1-2%	
$H \to ZZ \to \ell^+ \ell^- \ell'^+ \ell'^-$	1-2%	
$H \to W^+ W^- \to \ell^+ \nu_\ell \ell'^- \bar{\nu}_{\ell'}$	20%	
$H ightarrow b ar{b}$	10%	
$H \to \tau^+ \tau^-$	15%	

Systematic uncertainties on Run 2 combination

Largest systematic uncertainty impacts from

- limited statistics in data
- the signal and background theory modeling
- Main experimental uncertainties include jet energy scale and resolution uncertainties

Uncertainty source	$\Delta \mu$	
Total uncertainty	+0.44	-0.42
Statistical uncertainty	+0.41	-0.39
Total systematic uncertainty	+0.17	-0.16
Size of simulated samples	+0.07	-0.06
Total experimental uncertainty	+0.12	-0.10
Total theoretical uncertainty	+0.10	-0.11

Improvements in sensitivity w.r.t. 2016 CMS result

2016 CMS result: Phys.Rev.Lett.122,021801

- Targeting ggH and VBF production single BDT.
- Classic bump hunt in $M_{\mu\mu}$ with data-driven fits
- Expected sensitivity with 2016 data: 0.9σ

Run 2 CMS result

- Embedding $M_{\mu\mu}$ resolution in BDT training to improve measurement
- New channels targeting VH and ttH.
- New exclusive VBF channel with redesigned simulation based strategy.
- More robust background modeling
- Specific muon p_t corrections: final state radiation and muon-track impact parameter w.r.t beamspot

Run 2 result improves upon the extrapolation of the 2016 only result (by luminosity) by about 35%

The HL-LHC

- Starting in 2027
- Increase beam intensity
 - Baseline: $L = 5.0 \times 10^{34}$ cm⁻²s⁻¹ (140 PU)
 - Ultimate: L = 7.5 × 10³⁴ cm⁻²s⁻¹ (200 PU)
- Target is 3000 4000 fb⁻¹ data
- More p-p collisions per bunch crossing
- Experiments will need to upgrade to maintain current level of particle reconstruction efficiencies.

