#### Hadronic Interactions & Synergies between **UHECRs and Particle Physics**

**Dennis Soldin** University of Delaware & Bartol Research Institute

**Conveners:** H. P. Dembinski, T. Pierog, D. Soldin **Contributors:** M. Albrow, L. Cazon, R. Conceição, A. Fedynitch





**BARTOL RESEARCH** INSTITUTE



#### What is the current status of the field?

- Introduction air shower physics
- Cross-section measurements using EAS: synergies UHECRs and particle physics
- Review Muon Puzzle:
  - Auger: ~30% discrepancies in  $N_{\mu}$
  - $N_{\mu}$  vs.  $X_{\max}$  and  $X_{\mu,\max}$  vs.  $X_{\max}$
  - ► WHISP: excess towards high energies
    - slope in  $z z_{mass}$  significant at  $\sim 8\sigma$
  - Origin remains unknown!
- <u>Challenge for accelerators:</u>
  - Interactions of EAS particles
  - CM energies: GeV to hundreds of TeV
  - Forward direction





#### What is the current status of the field?

0.3

0.2

0.1

0.0

-0.1

-0.2

100

80

60

40

20

0

-20

-40

-60 -

-80

 $\approx \Delta N_{\mu}/N_{\mu}$ 

 $\Delta \ln N_{\mu}$ 

- <u>Review accelerator measurements:</u>
  - ALICE, CMS/CASTOR, LHCf, LHCb/SMOG, NA61/SHINE
    - Inelastic cross-sections
    - Hadron multiplicity
    - Elasticity
    - Hadron composition (ratio e.m. to hadr. energy flow)
  - Pseudorapidity ranges





f(E) at  $\sqrt{s_{\rm NN}} = 13 \,{\rm TeV}$ 



- Current uncertainties of muon measurements:  $\sim 15-20 \%$
- Proton EAS: fluctuations of same order
- Iron EAS:  $\sim 5\%$  fluctuations
- Uncertainties of muon measurements will be reduced in next decade:
  - Larger detectors
  - Measurements close to shower axis
  - Larger statistics
  - Improved calibration
  - New analysis techniques (ML)
- Smaller uncertainties, better resolution!









- Multi-hybrid measurements (Auger)!
  - <u>EAS energy:</u> Fluorescence Detectors (FD)
  - Muon number: Surface Detectors (SD) + Scintillators (SSD) + Muon Detectors (MD)
- Event-to-event muon distributions
- Studies of the observed discrepancies in a non-degenerated way
- Radio extension (RD): mass & energy, resolves bias from single technology
- Simultaneous measurement:  $X_{\text{max}}$ ,  $X_{\mu,\text{max}}$
- Zenith angle evolution: muon spectrum!
- Machine learning techniques





- Multi-hybrid measurements (Auger)!
  - <u>EAS energy:</u> Fluorescence Detectors (FD)
  - Muon number: Surface Detectors (SD) + Scintillators (SSD) + Muon Detectors (MD)
- Event-to-event muon distributions
- Studies of the observed discrepancies in a non-degenerated way
- Radio extension (RD): mass & energy, resolves bias from single technology
- Simultaneous measurement:  $X_{\text{max}}$ ,  $X_{\mu,\text{max}}$
- Zenith angle evolution: muon spectrum!
- Machine learning techniques





- Multi-hybrid measurements (Auger)!
  - <u>EAS energy:</u> Fluorescence Detectors (FD)
  - <u>Muon number:</u> Surface Detectors (SD) + Scintillators (SSD) + Muon Detectors (MD)
- Event-to-event muon distributions
- Studies of the observed discrepancies in a non-degenerated way
- Radio extension (RD): mass & energy, resolves bias from single technology
- Simultaneous measurement:  $X_{\text{max}}$ ,  $X_{\mu,\text{max}}$
- Zenith angle evolution: muon spectrum!
- Machine learning techniques





- Multi-hybrid measurements (IceCube)!
  - <u>EAS energy:</u> Surface Detectors (IceTop)
  - Muon number: IceTop (GeV muons) + in-ice array (TeV muons)
  - Two vastly different energy regimes
  - Spectral information!
- Radio extension (RD): mass & energy, resolves bias from single technology
- Measurement of prompt (PeV) muons?
- Seasonal muon flux as a probe for pion/kaon ratio (lower EAS energies)
- Machine learning techniques





- Multi-hybrid measurements (IceCube)!
  - <u>EAS energy:</u> Surface Detectors (IceTop)
  - Muon number: IceTop (GeV muons) + in-ice array (TeV muons)
  - Two vastly different energy regimes
  - Spectral information!
- Radio extension (RD): mass & energy, resolves bias from single technology
- Measurement of prompt (PeV) muons?
- Seasonal muon flux as a probe for pion/kaon ratio (lower EAS energies)
- Machine learning techniques





- Multi-hybrid measurements (IceCube)!
  - <u>EAS energy:</u> Surface Detectors (IceTop)
  - Muon number: IceTop (GeV muons) + in-ice array (TeV muons)
  - Two vastly different energy regimes
  - Spectral information!
- Radio extension (RD): mass & energy, resolves bias from single technology
- Measurement of prompt (PeV) muons?
- Seasonal muon flux as a probe for pion/kaon ratio (lower EAS energies)
- Machine learning techniques





- Multi-hybrid measurements (IceCube)!
  - <u>EAS energy:</u> Surface Detectors (IceTop)
  - Muon number: IceTop (GeV muons) + in-ice array (TeV muons)
  - Two vastly different energy regimes
  - Spectral information!
- Radio extension (RD): mass & energy, resolves bias from single technology
- Measurement of prompt (PeV) muons?
- Seasonal muon flux as a probe for pion/kaon ratio (lower EAS energies)
- Machine learning techniques





- Accelerator measurements (LHC)!
- Proton-Oxygen collisions in Run 3 (2023)
  - Importance for EAS physics
- High-Luminosity LHC!
- Forward experiments





#### Open questions for the new generation of **UHECR** observatories

- Expectation: precise characterization (solution?) of the Muon Puzzle within the next decade
- New large-scale EAS observatories with particle detectors (GCOS, IceCube-Gen2, GRAND?) provide large aperture and thus unprecedented event statistics
  - New era of high-precision measurements with EAS!
- New EAS observables and analysis techniques to test hadronic interaction models
- Precise measurements in the forward region at LHC (including new proposed experiments, e.g. Forward Physics Facility, Very Forward Hadron Spectrometer at LHC) will strongly constrain hadronic models
- Hadronic models have to describe both EAS and LHC measurements
  - Tests of SM predictions at energies much higher than the LHC (far forward region)!
- If LHC data is reproduced but Muon Puzzle remains:
  - Tests of BSM/exotic scenarios

First statistically significant measurement of prompt muons, probe of charm production (IceCube-Gen2)



#### White Paper Status

- Draft still in progress...
  - Refinements of the text
  - Adding some missing parts
  - Beyond 10 years outlook still in progress...
  - Mature draft expected next week!
    - Circulation to experimental collaborations
- Thanks to all contributors!
  - M. Albrow, L. Cazon, R. Conceição, A. Fedynitch, H. P. Dembinski, T. Pierog, D. Soldin
- <u>Thanks to the conveners!</u>
  - H. P. Dembinski, T. Pierog, tanguy.pierog@kit.edu soldin@udel.edu hans.dembinski@tu-dortmund.de
- Please contact us if you have further input / comments



D. Soldin

