UHECRs and Magnetic Fields

Rafael Alves Batista, Tess Jaffe, Michael Unger

2nd Snowmass UHECR Mini-Workshop 25 January 2022

Instituto de Física Teórica Universidad Autónoma de Madrid

<u>rafael.alvesbatista@uam.es</u>

connections

Isotropic random

UHECR deflections

- to first-order, deflections depend on CR rigidity
- different types of field structures act differently
- to interpret UHECR arrival directions, each type of structure have to be understood
- conversely, UHECR deflections can provide information about magnetic fields

CRs are backtracked from the circles

- they end up in the indicated squares for each different GMF model
- b deflections are rigidity-dependent

the galactic magnetic field (GMF)

multiplets and the galactic magnetic field

connections: mass composition

next decade

- SKA: pulsar observations + parallax measurements
- PASIPHAE survey (starlight polarisation) + GAIA distance measurements (up to ~ 2 kpc)

what will we most likely have

- measurements of coherent component of GMF
- measurements of random component of GMF
- better understanding of the field reversals

beyond the next decade

- GMF in the halo will likely not be measured
- but we will have better estimates of the field in the halo in external galaxies
- we will be able to build better models for the halo component of the GMF

GMF: looking into the future

magnetic fields in the large-scale structure of the universe

intergalactic magnetic fields (IGMFs)

next decade

- better measurements of IGMFs in structures (clusters and filaments)
- new IGMF constraints from gamma-ray observatories such as CTA
- possibility of multimessenger constraints using gamma-ray cascades and, e.g., neutrinos
- IGMF in voids will likely remain mostly unknown

beyond the next decade

- \blacktriangleright SKA + ngVLA \rightarrow Faraday tomography of extragalactic magnetic fields?
- ▶ gamma-ray observatories at ~MeV-GeV energies (AMEGO, GAMMA-400, AMS-100) + TeV observatories (e.g. CTA) → better constraints

wishlist: 3D map of extragalactic fields

IGMFs: looking into the future

- in principle, it is possible to constrain magnetic fields using UHECRs
- UHECR sources have to be known
- UHECR composition must be known
- opportunities for multimessenger constraints

van Vliet et al. 2021

constraining magnetic fields

- substantial progress in the modelling of the GMF will be made in the next decade
- *either* IGMFs have to be shown to be weak *OR* they must be understood and modelled
- even if they are strong, UHECR astronomy is still be possible (but more difficult)
- substantial magnetic-field uncertainties will still be present in UHECR measurements in the near and mid-future
- \blacktriangleright ability to scan the parameter space of magnetic-field uncertainties ightarrow computational developments
- next-generation observatories should measure composition on an event-by-event basis
- identification of UHECR multiplets can strongly constrain GMF
- > UHECRs could be used to constrain IGMFs, especially combined with other messengers

summary & outlook

summary