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Why does the energy frontier need a future?
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Science drivers for High Energy Physics:



Why does the energy frontier need a future?
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V(h) = λv2h2 + λvh3 +
λ
4

h4
need to produce and study 
high-energy higgses to  

probe the potential!
N. Craig, E. Petit

https://indico.fnal.gov/event/56615/contributions/255033/attachments/162423/214683/Craig_Fermilab_MuonColliders.pdf
https://indico.in2p3.fr/event/19802/contributions/79146/attachments/57957/77586/HiggsPhysics_GT01_120320.pdf


What have we done so far?

• The reasonable thing! 
⃝ Take advantage of our readily 

accessible, stable, charged 
particles: e & p
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p
e

• What have we 
done with them? 
• A lot!



What have we done so far?
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How do we go forward?
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LHC (CERN) 
13.6 TeV

1 milecan we go to higher energies?

B ≈ 3( E
1 TeV )( 1 km

R ) T

to go from 14 to 100 TeV, could do: 
same magnets, 7x ring size 

2x magnetic field, 3.5x ring size
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electron beam
proton beam
fixed target

LHC (CERN) 
13.6 TeV

1 milecan we go to higher energies?

B ≈ 3( E
1 TeV )( 1 km

R ) T

to go from 14 to 100 TeV, could do: 
same magnets, 7x ring size 

2x magnetic field, 3.5x ring size

LHC: 8 T magnets, 27 km size 
FCC-hh: ~16 T magnets, ~90 km size



The Muon Smasher's Guide, J. Reuter et al

How do we go forward?
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If we want to study the mysteries of EWK symmetry breaking 
maybe an EWK machine would be nice?

ee or µµ?

https://cds.cern.ch/record/2762104/plots
https://arxiv.org/pdf/2212.01323.pdf


How do we go forward?

10J. Osborne et al

• Not on the plot! 
⃝ Highest energy explored for 

e+e- is 3 TeV

E = ( G
100 MeV/m )( L

10 km ) TeV

https://cds.cern.ch/record/2689893?ln=en


• Using electrons… 
⃝ Synchrotron radiation means we can’t 

make high energy circular colliders 
⃝ Linear collider lengths are proportional to 

their energy 
• Using protons… 

⃝ Effective center of mass energy ~1/10 of 
beam, and ring size set to beam energy 

⃝ EWK cross-section tiny compared to QCD

How do we go forward?
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P ≈ 3 × 10−7( 1 km
R )
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• Enter the muon! 
⃝ High mass — avoids synchrotron 

limitations, can do a circular collider 
⃝ Fundamental particle — can get higher 

energy reach with lower energy beam 
compared to protons 

⃝ Bonus: luminosity increases linearly with 
energy for fixed power

How do we go forward?
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p

µ

e

K. Long et al

https://cds.cern.ch/record/2725875/files/fermilab-pub-20-366-ad-apc.pdf


• Enter the muon! 
⃝ High mass — avoids synchrotron 

limitations, can do a circular collider 
⃝ Fundamental particle — can get higher 

energy reach with lower energy beam 
compared to protons 

⃝ Bonus: luminosity increases linearly with 
energy for fixed power 

⃝ Downside: muons decay…

How do we go forward?
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K. Long et al

https://cds.cern.ch/record/2725875/files/fermilab-pub-20-366-ad-apc.pdf


How do we go forward?
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a multi-TeV 
muon collider?



How do we go forward?
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A spherical cow muon collider
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L = circumference
E = beam energy

• Muons aren’t just sitting around 
⃝ Production limited, so concentrate them in two bunches 
⃝ Circulate pairs of bunches until they’re depleted 

• What happens to the bunches? 

⃝ muon lifetime 

⃝ Lorentz factor

τμ = 2.2 μs

γ = 9,400 × ( E
1 TeV )



A spherical cow muon collider

• Muons aren’t just sitting around 
⃝ Production limited, so concentrate them in two bunches 
⃝ Circulate pairs of bunches until they’re depleted 

• What happens to the bunches? 

⃝ muon lifetime 

⃝ Lorentz factor 

⃝ average decay time in lab frame
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L = circumference
E = beam energy

Need to re-inject at:  
~100 Hz for 0.5 TeV beam 

~10 Hz for 5 TeV beam 

τμ = 2.2 μs

γ = 9,400 × ( E
1 TeV )
τ′ μ = 21 ms × ( E

1 TeV )



A spherical cow muon collider

• Muons aren’t just sitting around 
⃝ Production limited, so concentrate them in two bunches 
⃝ Circulate pairs of bunches until they’re depleted 

• What happens to the bunches? 

⃝ time between collisions
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Large spacing between 
collisions, ~1000x lower  

rate than LHC

L = circumference
E = beam energy

t = 33 μs × ( L
10 km )



• average decay time in lab frame 

• average beam crossings for each injected muon:

A spherical cow muon collider
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Luminosity increases  
proportionally to energy L = circumference

E = beam energy

τ′ μ = 21 ms × ( E
1 TeV )

⟨ncrossings⟩ = 620 × ( E
1 TeV ) × (10 km

L )



A spherical cow muon collider
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L = circumference
E = beam energy

For each bunch of 2x1012, 
expect around 107  

decays in this region

inversely proportional to energy

• average decay time in lab frame 

• average beam crossings for each injected muon: 

• fraction of muons decaying within 20m of the interaction point:

τ′ μ = 21 ms × ( E
1 TeV )

⟨ncrossings⟩ = 620 × ( E
1 TeV ) × (10 km

L )
f ≈ 6.4 × 10−6 × (1 TeV

E )



• average decay time in lab frame 

• average beam crossings for each injected muon: 

• fraction of muons decaying within 20m of the interaction point: 

• total energy of decay products within 20m of the interaction point

A spherical cow muon collider
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L = circumference
E = beam energy

τ′ μ = 21 ms × ( E
1 TeV )

⟨ncrossings⟩ = 620 × ( E
1 TeV ) × (10 km

L )
f ≈ 6.4 × 10−6 × (1 TeV

E )

Edecay = 13 EeV × (nμ/bunch
2 × 1012 ) does not depend on E!



A spherical cow muon collider

• Takeaways: 
⃝ Key ee challenges get harder with E 

• synchrotron radiation at a circular collider 
• power and size constraints on a linear collider 

⃝ Key pp challenges get harder with E 
• large ring size needed for high energy beams 

⃝ Key µµ challenges get easier with E 
• higher luminosity due to circulating beams 
• fewer beam decays
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L = circumference
E = beam energy



A spherical cow muon collider

• Some other selling points: 
⃝ Compact size and low power means lower cost and 

carbon footprint 
⃝ Potential Fermilab siting, which means it could be 

complimentary to a CERN program 
⃝ Most of cost goes into new technology; good for 

return on investment and international buy-in 
⃝ Path beyond the 10 TeV scale!
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A real muon collider…?

D. Stratakis

MW-scale proton 
driver

Target for  
muon production 

+ solenoid for 
capture

6D 
ionization 

cooling

Accelerator 
ring

Collider 
ring
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A real muon collider…?

particles resulting from one 
muon decay 

we expect ~107 of these

In the detector, tungsten nozzles 
block high energy products of 

decaying beam

F. Collamati et al

https://arxiv.org/pdf/2105.09116.pdf


A real muon collider…?
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In the detector, tungsten nozzles 
block high energy products of 

decaying beam

In the vertex detector…

D. Ally



A real muon collider…?
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4D tracker, potentially with 
pointing information

High granularity 
calorimeter with 
precision timing 

High rate muon 
system (esp. in 

endcaps)

Radiation hard 
electronics with on-chip 

intelligence for 
triggerless readout

Design for forward 
systems for tagging and 

luminosity 



A real muon collider…?
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Everything is interconnected!

Tweaks to beam parameters or 
machine-detector-interface 
completely change detector 

requirements, physics performance An opportunity to bring accelerator, 
experiment, and theory together — 

already happening.
N. Bartosik et al

https://link.springer.com/article/10.1007/s41781-021-00067-x


A real muon collider…?

29Muon Collider Forum Report

https://arxiv.org/pdf/2209.01318.pdf


A real muon collider…?

• Muon collider interest comes in waves 
⃝ First proposed in connection with a 

neutrino factory at BNL or FNAL 
⃝ MAP program focused on a Higgs factory 
⃝ Now, shifted focus to multi-TeV collider 

with connections back to Higgs and 
neutrinos
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Muon Collider Papers

Muon collider + 
neutrino factory 

program
MAP 

program

Lead-up to 
“2021” 

Snowmass



A real muon collider…?
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Community already well-tested in 
design and production



A real muon collider…?

32K. Pedro

Mel turns 100

Exciting opportunity to continue the 
exploration of the energy frontier — 

maybe even in Chicagoland!

https://indico.slac.stanford.edu/event/7992/contributions/6077/attachments/2693/7707/Paths%20for%20the%20Future%20of%20Collider%20Physics%20SLAC%20new.pdf
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Thank you!


