Higgs Physics
End Game
Higgs Physics
End Game

Saturday May 20, 2023 — Patrick Bryant — Mel Fest
Higgs Physics
End Game

Starting in September

Saturday May 20, 2023 — Patrick Bryant — Mel Fest
Higgs Physics

• Observed ‘Higgs like’ boson in phenomenological sweet spot
 - A little lighter \rightarrow bosonic decays suppressed
 - A little heavier \rightarrow fermionic decays suppressed

observed $m_H=125$ GeV
So many fun things to measure!

- Observed four primary production modes and five decay modes
• So many fun things to measure!
 - Observed four primary production modes and decay modes

Almost six!
• So many fun things to measure!
 - Observed four primary production modes and five* decay modes
 - Very ‘Higgs like’
Higgs Physics

• Four parts of the Higgs mechanism to check:
 - Higgs self-coupling
 - Higgs total width
 - Higgs to invisible
 - Yukawa CP violation
Higgs Self-Coupling

- Standard HH measurements combined with all single H measurements
Higgs Self-Coupling

- $b\bar{b}\gamma\gamma$, $b\bar{b}\tau\tau$, $b\bar{b}b\bar{b}$ remarkably competitive!

ATLAS

$\sqrt{s} = 13$ TeV, 126—139 fb$^{-1}$

$\sigma_{99\% + VBF}(HH) = 32.7$ fb

<table>
<thead>
<tr>
<th>Category</th>
<th>Obs.</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b\bar{b}\gamma\gamma$</td>
<td>4.2</td>
<td>5.7</td>
</tr>
<tr>
<td>$b\bar{b}\tau^+\tau^-$</td>
<td>4.7</td>
<td>3.9</td>
</tr>
<tr>
<td>$b\bar{b}b\bar{b}$</td>
<td>5.4</td>
<td>8.1</td>
</tr>
<tr>
<td>Combined</td>
<td>2.4</td>
<td>2.9</td>
</tr>
</tbody>
</table>
Higgs Self-Coupling

- Standard candles for $b\bar{b}\gamma\gamma$, $b\bar{b}\tau\tau$, $b\bar{b}b\bar{b}$ are remarkably competitive!

\[
\frac{\sigma(pp \to ZZ \to b\bar{b}b\bar{b})}{\sigma(pp \to HH \to b\bar{b}b\bar{b})} \approx 31
\]

\[
\frac{\sigma(pp \to ZH \to b\bar{b}b\bar{b})}{\sigma(pp \to HH \to b\bar{b}b\bar{b})} \approx 7
\]

\[
\frac{\sigma(pp \to ZZ \to b\bar{b}\tau\tau)}{\sigma(pp \to HH \to b\bar{b}b\bar{b})} \approx 63
\]

\[
\frac{\sigma(pp \to ZH \to b\bar{b}\tau\tau)}{\sigma(pp \to HH \to b\bar{b}b\bar{b})} \approx 13^*
\]

\[
* (3.5[b\bar{b}\tau\tau] + 9.7[\tau\tau b\bar{b}])
\]
Combination with single H measurements mostly serves to constrain κ_t.
Higgs Width

• Any new couplings can change width, particularly BSM decay modes which may be hard to observe directly
 - Direct measurement is hopeless
 - Rely on ratio of off/on-shell cross section, some model dependence

\[
\frac{\sigma_{\text{off-shell}}^{gg\rightarrow H\rightarrow ZZ}}{\sigma_{\text{on-shell}}^{gg\rightarrow H\rightarrow ZZ}} \propto \frac{\Gamma_H m_H}{m_{ZZ}^2} \times f(\text{scale dependence of } HZZ \text{ and } ggH \text{ couplings})
\]
- Precision calculations of non-resonant ZZ cross section
- NLO QCD k-factors as function of m_{ZZ} 1.5-2
- N3LO QCD norm k-factor 1.32
- Impressive to find 3σ evidence of an effect which is smaller than these k-factors
• Precision calculations of non-resonant ZZ cross section
- NLO QCD k-factors as function of m_{ZZ} 1.5-2
- N3LO QCD norm k-factor 1.32
- Impressive to find 3σ evidence of an effect which is smaller than these k-factors

![Graph](HIGG-2018-32)

ATLAS

On + Off-shell combined
13 TeV, 139 fb$^{-1}$

- Obs-Stat. only: 1.1$^{+0.6}_{-0.5}$
- Obs-Sys: 1.1$^{+0.7}_{-0.6}$
- Exp-Stat. only: 1.0$^{+0.8}_{-0.9}$
- Exp-Sys: 1.0$^{+0.9}_{-0.9}$

$\Gamma_{H}/\Gamma_{H}^{SM}$
Combination of visible Higgs decays gives indirect and model dependent constraint on BSM Higgs to invisible BR.

- Direct search in VBF production gives strongest constraint
Another impressive measurement relying on large theory k-factors
- In this case double ratio of EW Z/W+jets vs m_{jj}
Yukawa CPV

- Tree level CP Violation is possible in Yukawa couplings
 - CPV in gauge couplings is suppressed by Λ^{-2}
 - $H \rightarrow \tau\tau$ is the only option at the LHC
Yukawa CPV

• Pure CP-odd hypothesis disfavored at 3.4σ

- 10 different combinations of τ decay modes, 16 signal regions

\[
d\Gamma_{H \rightarrow \tau^+ \tau^-} \approx 1 - b(E_+) b(E_-) \frac{\pi^2}{16} \cos(\varphi^*_\text{CP} - 2\phi_\tau)
\]
Conclusions

- Incredibly rich Higgs phenomenology made possible by $m_H = 125$ GeV
- Huge combination of measurements consistent with SM Higgs
 - LHC beginning to constrain:
 - Self-coupling
 - Width
 - BR($H\rightarrow\text{Inv.}$)
 - Yukawa CP violation
- My money is on SM Higgs
 - If you have to retire and do something else, now is the time