

Emulation of Cosmic-Ray Antideuteron Fluxes from Dark Matter Annihilation

Based on ArXiv: 2406.18642

Lena Rathmann

In collaboration with Jan Heisig, Michael Korsmeier, Michael Krämer and Kathrin Nippel **Collaborative Research Center TRR 257**

Particle Physics Phenomenology after the Higgs Discovery

TeVPA Conference 2024

26.08.2024

- Antimatter can be produced in dark matter annihilations
- Background from interactions of cosmic rays negligible at low energies for antinuclei but not for antiparticles
- New GAPS experiment & AMS-02 can detect low energy antinuclei

Why Antideuterons?

Where do Antideuterons come from?

Production

Production: Coalescence Mechanism

• Coalescence momentum p_c , determined from experiment

TeVPA 2024

Fornengo+ [1306.4171]

Production: Coalescence Mechanism

- Coalescence momentum p_c , determined from experiment
- Match number of antideuterons from simulated hadronic Z-decays to amount measured by LEP
- Spatial separation smaller than 2 fm

Antideuterons from $\bar{\Lambda}_b$ Decay

• $m_{\bar{\Lambda}_{h}} = 5.6 \text{ GeV} \rightarrow \text{decays into}$ particles with small relative momenta $\rightarrow boosts \bar{d}$ production

Winkler, Linden [2006.16251]

Antideuterons from $\overline{\Lambda}_h$ Decay

Displaced vertex

- $m_{\bar{\Lambda}_{h}} = 5.6 \text{ GeV} \rightarrow \text{decays into}$ particles with small relative momenta \rightarrow boosts *d* production
- Rescale $\bar{\Lambda}_b$ production in PYTHIA to match measurement of transition ratio $f(b \rightarrow \Lambda_h)$ with extra parameter $r_{\Lambda_h} \approx 3$

Galactic Propagation

Propagation

Solar Modulation

Antideuteron Propagation

 q_p ,

 q_p ,

INJ.BRK

DIFF.BRK

- Use diffusion break and injection break models following Korsmeier, Cuoco [2112.08381]
- Use propagation tool
 GALPROP
- Implement secondary and tertiary \bar{d} with analytic coalescence model

Speed-up Antideuteron Simulation

TeVPA 2024

Speed-up Antideuteron Simulation

TeVPA 2024

Neural Network

the same layer \rightarrow can account for correlations between energy bins

Recurrent Neural Networks (RNN) use output of particular layer as input of

Neural Network

- the same layer \rightarrow can account for correlations between energy bins
- Similar to Kahlhoefer et al. [2107.12395] and Balan et al. [2303.07362]
- Relative error of network $\mathcal{O}(10^{-2})$

JNIVERSIT

Particle Physics

Recurrent Neural Networks (RNN) use output of particular layer as input of

Network available in

https://github.com/ kathrinnp/DarkRayNet

Prediction of Sensitivity Factor

- posterior of p, \bar{p} and He fit
- Apply force-field approximation to account for solar modulation

TeVPA 2024

• Generate fluxes for set of propagation parameters $\{\theta_{\text{prop},i}\}$ sampled from

Prediction of Sensitivity Factor

- posterior of p, \bar{p} and He fit
- Apply force-field approximation to account for solar modulation
- Marginalize over $\{\theta_{\text{prop},i}\}$:

$$\langle \Phi_{\bar{d}} \rangle = \frac{\sum_{i} \Phi_{\bar{d},i} \frac{\mathscr{L}_{\mathrm{DM}}(\theta_{\mathrm{prop},i}, x_{\mathrm{DM}})}{\mathscr{L}(\theta_{\mathrm{prop},i})}}{\sum_{i} \frac{\mathscr{L}_{\mathrm{DM}}(\theta_{\mathrm{prop},i}, x_{\mathrm{DM}})}{\mathscr{L}(\theta_{\mathrm{prop},i})} }$$

• Calculate sensitivity factor:

TeVPA 2024

 $\Phi_{\bar{d}}$

exp.

• Generate fluxes for set of propagation parameters $\{\theta_{\text{prop},i}\}$ sampled from

Sensitivity DIFF.BRK, Annihilation in $b\bar{b}$

 \blacksquare Assuming \bar{p} limit, sensitivity only to small DM masses

GAPS independent test to AMS-02

TeVPA 2024

nly to small DM masses /IS-02

 \bar{p} limit from Balan et al. [2303.07362]

Conclusion

- Antideuterons are great for indirect detection because of negligible background
- Predicted fluxes of antideuterons on Earth for varying DM models including uncertainties from antideuteron production
- Calculating fluxes is slow \rightarrow trained Neural Network DARKRAYNET, available on GitHub, can be used for arbitrary DM models
- Obtained sensitivity factor for AMS-02 and GAPS
- AMS-02 and GAPS only sensitive to low DM masses if DM annihilates into $b\bar{b}$

https://github.com/ kathrinnp/DarkRayNet

Conclusion

- Antideuterons are great for indirect detection because of negligible background
- Predicted fluxes of antideuterons on Earth for varying DM models including uncertainties from antideuteron production
- Calculating fluxes is slow \rightarrow trained Neural Network DARKRAYNET, available on GitHub, can be used for arbitrary DM models
- Obtained sensitivity factor for AMS-02 and GAPS
- AMS-02 and GAPS only sensitive to low DM masses if DM annihilates into $b\bar{b}$

https://github.com/ kathrinnp/DarkRayNet

Thank you!

Backup Slides

TeVPA 2024

1	2
	J

Antideuteron Injection Spectra

- Generated spectra for $m_{\rm DM} = 100 \, {\rm GeV} \, {\rm using}$ MADDM and PYTHIA 8.2
- Include \bar{d} produced at initial vertex and through Λ_b decay
- Compare to PPPC4DMID [1012.4515] (used PYTHIA 8.1)

 $\mathrm{d}N/\mathrm{d}\log_{10}(x)$

 $\mathrm{d}N/\mathrm{d}\log_{10}(x)$

Network Architecture

TeVPA 2024

- Relative difference of most transformed fluxes at most 6×10^{-4}
- Translates to relative error of $\mathcal{O}(10^{-2})$ in the actual flux

Prediction of Sensitivity Factor

TeVPA 2024

Experimental Sensitivities

Experiment	Energy range [GeV/nuc]
GAPS	[0.05, 0.25]
AMS-02	[0.2, 0.8] and $[2.2, 4.2]$

TeVPA 2024

$$\begin{array}{l} \Phi_{\mathrm{sens},E_{\mathrm{exp}}} \\ [\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}\,(\mathrm{GeV/nuc})^{-1}] \\ 2 \times 10^{-6} \quad \mathrm{GAPS} \ \mathrm{Collaboration} \ [1506.02] \\ 4.5 \times 10^{-7} \ \mathrm{Choutko}, \ \mathrm{Giovacchini} \ [\mathrm{ICRC} \ 2] \end{array}$$

Antideuterons from DM annihilation - L. Rathmann

2513] 2008]

Propagation Parameters & Priors

_

Parameters

$\gamma_{1,p}$
γ_1
$\gamma_{2,p}$
γ_2
$R_0[{ m GV}]$
s
$D_0 [10^{28} \ { m cm}^2/{ m s}]$
δ_l
δ
$\delta_h - \delta$
$R_{D,0}[{ m GV}]$
s_D
$R_{D,1}[10^3]$
$v_{ m A}[{ m km/s}]$
$v_{0,\mathrm{c}}\mathrm{[km/s]}$

TeVPA 2024

Priors	DIFF.BRK	INJ.BRK
1.2 - 2.1		
1.2-2.1		
2.1 - 2.6		
2.1 - 2.6		
1.0-20		
0.1 - 0.7		
0.5 - 10.0		
1.0-0.5		
0.3-0.7		
0.2 - 0.0		
1.0 - 20.0		
0.1 - 0.9		
100-500		
0 - 30		
0 - 60		

1	Q
- 1	\mathbf{J}

Singlet Scalar Higgs Portal

- SM extended by gauge-singlet real scalar
- Portal coupling to Higgs fixed to explain measured relic abundance

TeVPA 2024

Antideuterons from DM annihilation - L. Rathmann

20

Sensitivity INJ.BRK

TeVPA 2024

SSHP Sensitivity AMS-02

TeVPA 2024

		1		1	
-	_	T		L	
				L	
				L	
				L	
				L	
				L	
				L	
				L	
				L	
			_	J	

SSHP Sensitivity GAPS

TeVPA 2024

Analytic Coalescence Model

• Assume uncorrelated \bar{p}, \bar{n} distributions

TeVPA 2024

TeVPA 2024

INJ.BRK

Limits for DM annihilation into $b\bar{b}$, from Balan et al. [2303.07362]

25