

Searching for Dark Photon Production Using Genetic Algorithms

> Rohan Arni High Technology High School, Lincroft NJ 07738, USA roarni@ctemc.org

Rohan Arni **Searching for Dark Photon Production Using Genetic Algorithms** 2024/08/27 1/20

The Dark Photon

- Dark matter makes up 27% of the energy density and 85% of the matter density of the universe. \blacksquare
- The Standard Model does not account for dark matter, a separate dark sector is proposed \blacksquare
- The dark photon is a force carrier for the dark sector, similar to the photon \blacksquare
- New particle can be introduced to the standard model by extending SM gauge group with new $U(1)$ gauge symmetry \blacksquare
- The dark photon interacts with the SM photon via kinetic mixing. \blacksquare

The Dark Photon, cont'd

Kinetic Mixing/Interaction Lagrangian

$$
{\cal L}_0 = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\epsilon}{2} F_{\mu\nu} F'^{\mu\nu} \nonumber \\ {\cal L}_{int} = e J_\mu A^\mu + e' J'_\mu A'^\mu
$$

Where:

- $F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu$ is the electromagnetic field strength tensor, where A_μ is the SM photon field.
- $F'_{\mu\nu}=\partial_\mu A'_\nu-\partial_\nu A'_\mu$ is the dark photon field strength tensor, where A'_μ is the dark photon field.
- ϵ is the dimensionless kinetic mixing parameter. \blacksquare

Diagonalizing Kinetic Terms

Need to remove the mixing term so the kinetic terms only consist of parameters from one field. \blacksquare

Rotating Fields

$$
\begin{pmatrix} A^\mu_a \\ A^\mu_b \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{1-\epsilon^2}} & 0 \\ -\frac{\epsilon}{\sqrt{1-\epsilon^2}} & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} A'^\mu \\ A^\mu \end{pmatrix},
$$

After this rotation, if the dark photon has mass, we end up with the Lagrangian containing this term: \blacksquare

Charge Interaction

$$
\mathcal{L} \supset -\frac{e\epsilon}{\sqrt{1-\epsilon^2}} J_\mu A'^\mu \simeq -e\epsilon J_\mu A'^\mu,
$$

Consequences

- Based on the equation, the dark photon can interact with the same particles as a photon (suppressed by a factor ϵ) \blacksquare
- This interaction is called the dark photon portal \blacksquare
- This portal opens up new interaction/production channels. \blacksquare
- For instance, in meson decays, a neutral pion π^0 can decay into a photon and a dark photon: \blacksquare

Production of Dark Photon

$$
\pi^0\to\gamma+\gamma'
$$

- The rate of such a process is proportional to ϵ^2 $(\approx 10^{-6})$. \blacksquare
- The dark photon would contribute to missing energy signatures in experiments. \blacksquare

Machine Learning Approach

- The goal is to design an algorithm that can search for dark photons via missing/abnormal energy signatures. \blacksquare
- A binary classification model can be used to evaluate a data point if a dark photon is produced or not. \blacksquare
- Due to the nature of dark photon production, the resulting dataset will be imbalanced, with a majority of interaction not \blacksquare producing a dark photon.
- This imbalance can be accounted for with an AdaBoost model. \blacksquare

AdaBoost Diagram

Why Genetic Algorithms?

- The AdaBoost model has a set of hyperparameters (the number of estimators and the learning rate). \blacksquare
- Tuning the hyperparameters manually can take a lot of time to approach an optimal solution. \blacksquare
- An optimal solution to this problem can be reached with a genetic algorithm. \blacksquare

Data Simulation

- Simulated proton-proton collisions at 14 TeV using Pythia3.8 on a 2021 MacBook Pro (M1 Pro, 32 GB RAM) \blacksquare
- The simulation was modified to add a decay channel $(\pi^0\to\gamma+\gamma')$ with a branching ratio of 10^{-6} \blacksquare
- The dark photon was defined as a stable particle that is color neutral, chargeless, has a spin of 1 and a mass of 10^{-20} eV \blacksquare
- To gather data from the simulation, the program calculated: \blacksquare
	- the scalar sum of jet transverse momenta (HT) by summing the total visible energy
	- the missing transverse energy (MET) by summing total energy produced by neutrinos and dark photons \blacksquare
	- the razor variable of mass scale (*MR*) \blacksquare
	- the razor variable (R^2) , which quantifies the balance of energy and momentum.
	- boolean flag that checked if a dark photon was produced. \blacksquare

Data Calculations

More in-depth calculations:

MR Formula

$$
MR=\sqrt{(E_1+E_2)^2-(p_1^z+p_2^z)^2}
$$

R2 Formula

$$
R^2 = \left(\frac{M_T}{MR}\right)^2
$$

$$
M_T = \sqrt{2|\vec{p}_T^{vis}||M\vec{E}T|(1-\cos(\Delta\phi))}
$$

Algorithm, Pt. 2

Algorithm, Pt. 3

GA Execution

Rohan Arni **Searching for Dark Photon Production Using Genetic Algorithms** 2024/08/27 12/20

Data Snapshot

In the data set, only 25 out of 500,000 data points indicated that a dark photon was produced. \blacksquare

Genetic Algorithm Output Data

Genetic Algorithm Data

Final Model Results

- After algorithm execution, the algorithm converged on a solution with a fitness of 0.99995. \blacksquare
- The hyperparameters of the model are: \blacksquare

- Evaluating the model on the testing dataset resulted in an accuracy of 99.995%. \blacksquare
- However, the accuracy for instances where a dark photon was produced stood at 80%. \blacksquare
- Model had no false positives. \blacksquare

Conclusions

- The GA was successful in finding a model with a high accuracy, as shown by a model accuracy of 99.995% on the testing \blacksquare dataset.
- However, the accuracy for instances where a dark photon was produced stood at 80%. \blacksquare
- This dataset had an extreme imbalance, explaining the 80% accuracy on data points where a dark photon was produced \blacksquare in the testing set.
- This can be countered with using more advanced classification techniques (RL, XGBoost, etc.) \blacksquare
- However, there were no false positives, meaning that this algorithm could be used in beam experiments to find data to \blacksquare support the idea that dark photons are produced in these proton-proton experiments.

Summary: Dark Photon Search Using Genetic Algorithms

- Dark photon: Proposed force carrier for dark matter, interacts with SM photon via kinetic mixing \blacksquare
- Simulation: Proton-proton collisions at 14 TeV, added decay channel ($\pi^0 \rightarrow \gamma + \gamma^\prime$) \blacksquare
- ML approach: AdaBoost model for binary classification, genetic algorithm for hyperparameter tuning \blacksquare
	- Hyperparameters optimized: number of estimators, learning rate
- Dataset: 500,000 points, only 25 with dark photon production (extreme imbalance) \blacksquare
- Results: \blacksquare
	- Overall accuracy: 99.995%
	- Accuracy for dark photon events: 80%, no false positives \blacksquare
- Conclusion: Promising for beam experiments, but advanced techniques needed to address imbalance \blacksquare
	- Potential improvements: Reinforcement Learning, XGBoost \blacksquare

Acknowledgements

Acknowledgements

I would like to thank:

- Dr. Richard Oppenheim and Dr. Bruce Cortez (ex-AT&T Research) for their feedback and guidance for this project. \blacksquare .
- The University of Chicago and the organizers of the TeVPA conference for giving me an opportunity to share my \blacksquare research.

Questions?

Rohan Arni **Searching for Dark Photon Production Using Genetic Algorithms** 2024/08/27 19/20

Citations

- Aguilar-Arevalo, A.A.: Search for Dark Matter in the Beam-Dump of a Proton Beam with MiniBooNE. Journal of Physics: Conference Series 912, 012017 (2017). \blacksquare <https://doi.org/10.1088/1742-6596/912/1/012017>
- Batley, J., et al.: Search for the dark photon in decays. Physics Letters B 746, 178–185 (2015). <https://doi.org/10.1016/j.physletb.2015.04.068> \blacksquare
- Battaglieri, M., et al.: Dark Matter Search in a Beam-Dump EXperiment (BDX) at Jefferson Lab an Update on PR12-16-001 the BDX Collaboration. (2018). \blacksquare
- Berkane, A., Boussahel, M.: Dark Photon as an Extra U(1) Extension to the Standard Model with General Rotation in Kinetic Mixing. (2021). \blacksquare
- Celentano, A., et al.: New Production Channels for Light Dark Matter in Hadronic Showers. Physical Review D 102(7), 075026 (2020). \blacksquare <https://doi.org/10.1103/physrevd.102.075026>

Chatrchyan, S., et al.: Search for Supersymmetry with Razor Variables In PP Collisions Ats=7 TeV. Physical Review D 90(11), 112001 (2014). \blacksquare <https://doi.org/10.1103/physrevd.90.112001>

- Cushman, P., et al.: Snowmass CF1 Summary: WIMP Dark Matter Direct Detection. (2013). <https://doi.org/10.48550/arxiv.1310.8327> \blacksquare
- De Napoli, M.: Production and Detection of Light Dark Matter at Jefferson Lab: The BDX Experiment. Universe 5(5), 120 (2019). <https://doi.org/10.3390/universe5050120> .
- Deb, K.: Genetic Algorithm in Search and Optimization: The Technique and Applications. (1998). <http://repository.ias.ac.in/82743/> \blacksquare
- Dutra, M., et al.: MeV Dark Matter Complementarity and the Dark Photon Portal. Journal of Cosmology and Astroparticle Physics 2018(03), 037–037 (2018). \blacksquare <https://doi.org/10.1088/1475-7516/2018/03/037>
- Fabbrichesi, M., et al.: The Dark Photon. (2020). \blacksquare
- Leung, Y., et al.: Degree of Population Diversity a Perspective on Premature Convergence in Genetic Algorithms and Its Markov Chain Analysis. IEEE Transactions on Neural \blacksquare Networks 8(5), 1165–1176 (1997). <https://doi.org/10.1109/72.623217>
- Novaes, S.: Standard Model: An Introduction. (2000). <https://arxiv.org/pdf/hep-ph/0001283v1.pdf> \blacksquare
- Tong, D.: Gauge Theory. \blacksquare