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The Dark Photon

Dark matter makes up 27% of the energy density and 85% of the matter density of the universe.

The Standard Model does not account for dark matter, a separate dark sector is proposed

The dark photon is a force carrier for the dark sector, similar to the photon

New particle can be introduced to the standard model by extending SM gauge group with new  gauge symmetry

The dark photon interacts with the SM photon via kinetic mixing.

Extended Standard Model

U(1)
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The Dark Photon, cont’d

Kinetic Mixing/Interaction Lagrangian

Where:

 is the electromagnetic �eld strength tensor, where  is the SM photon �eld.

 is the dark photon �eld strength tensor, where  is the dark photon �eld.

 is the dimensionless kinetic mixing parameter.
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Diagonalizing Kinetic Terms

Need to remove the mixing term so the kinetic terms only consist of parameters from one �eld.

Rotating Fields

After this rotation, if the dark photon has mass, we end up with the Lagrangian containing this term:

Charge Interaction
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Consequences

Based on the equation, the dark photon can interact with the same particles as a photon (suppressed by a factor )

This interaction is called the dark photon portal

This portal opens up new interaction/production channels.

For instance, in meson decays, a neutral pion  can decay into a photon and a dark photon:

Production of Dark Photon

The rate of such a process is proportional to .

The dark photon would contribute to missing energy signatures in experiments.

ϵ

π0

π →0 γ + γ′

ϵ2 (≈ 10 )−6
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Machine Learning Approach

The goal is to design an algorithm that can search for dark photons via missing/abnormal energy signatures.

A binary classi�cation model can be used to evaluate a data point if a dark photon is produced or not.

Due to the nature of dark photon production, the resulting dataset will be imbalanced, with a majority of interaction not

producing a dark photon.

This imbalance can be accounted for with an AdaBoost model.

AdaBoost Diagram
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Why Genetic Algorithms?

The AdaBoost model has a set of hyperparameters (the number of estimators and the learning rate).

Tuning the hyperparameters manually can take a lot of time to approach an optimal solution.

An optimal solution to this problem can be reached with a genetic algorithm.

Genetic Algorithm Flowchart

No

Yes

Initialize Population Evaluate Fitness

Termination Condition Met?

Selection Crossover Mutation

Replace Least Fit

Return Best Solution
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Data Simulation

Simulated proton-proton collisions at 14 TeV using Pythia3.8  on a 2021 MacBook Pro (M1 Pro, 32 GB RAM)

The simulation was modi�ed to add a decay channel  with a branching ratio of 

The dark photon was de�ned as a stable particle that is color neutral, chargeless, has a spin of 1 and a mass of  eV

To gather data from the simulation, the program calculated:

the scalar sum of jet transverse momenta  by summing the total visible energy

the missing transverse energy  by summing total energy produced by neutrinos and dark photons

the razor variable of mass scale 

the razor variable , which quanti�es the balance of energy and momentum.

boolean �ag that checked if a dark photon was produced.

(π →0 γ + γ )′ 10−6

10−20

(HT )

(MET )
(MR)

(R )2
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Data Calculations

More in-depth calculations:

MR Formula

R2 Formula
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Algorithm, Pt. 1

Initialization

Start
Create dataset

500,000 data points
Import dataset

into Pandas DataFrame
Split data

Training:Testing
Create initial population

Set number of estimators: 50-400

Set learning rate: 0.1-1
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Algorithm, Pt. 2

Genetic Algorithm Creation

Define fitness function Define mutation function (DEAP) Define selection function (DEAP) Set genetic algorithm parameters

Population size: 50

Crossover probability: 0.5

Mutation probability: 0.2
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Algorithm, Pt. 3

GA Execution

Yes

NoRun genetic algorithm
for 10 generations

Is number of
generations met?

End

Evaluate fitness
of each model

Select individuals
for next generation

Apply crossover

Apply mutation
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Data Snapshot

In the data set, only 25 out of 500,000 data points indicated that a dark photon was produced.

Snapshot of Simulation Data

Event Number Dark Photon Produced?

352806 94.775 0.000 14000.000 0.000000 False

417824 48.964 0.000 14000.000 0.000000 False

469847 196.721 0.000 14000.000 0.000000 False

407746 118.227 1.069 13983.157 2.585e-06 False

469848 105.605 0.000 14000.000 0.000000 False

HT MET MR R2
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Genetic Algorithm Output Data

Genetic Algorithm Data

Generation Num. Evals Avg. Fitness Std. Dev Of Fitness Min Fitness Max Fitness

1 33 0.999929 1.91844e-05 0.99988 0.99995

3 27 0.999949 6.00333e-06 0.99992 0.99995

5 28 0.99995 1.11022e-16 0.99995 0.99995

7 34 0.999949 4.58258e-06 0.99992 0.99995

9 28 0.999949 4.58258e-06 0.99992 0.99995

10 40 0.99995 1.4e-06 0.99994 0.99995
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Final Model Results

After algorithm execution, the algorithm converged on a solution with a �tness of 0.99995.

The hyperparameters of the model are:

Final Model Hyperparameters

Number of Estimators Learning Rate

319 0.1

Evaluating the model on the testing dataset resulted in an accuracy of 99.995%.

However, the accuracy for instances where a dark photon was produced stood at 80%.

Model had no false positives.
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Conclusions

The GA was successful in �nding a model with a high accuracy, as shown by a model accuracy of 99.995% on the testing

dataset.

However, the accuracy for instances where a dark photon was produced stood at 80%.

This dataset had an extreme imbalance, explaining the 80% accuracy on data points where a dark photon was produced

in the testing set.

This can be countered with using more advanced classi�cation techniques (RL, XGBoost, etc.)

However, there were no false positives, meaning that this algorithm could be used in beam experiments to �nd data to

support the idea that dark photons are produced in these proton-proton experiments.
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Summary: Dark Photon Search Using Genetic Algorithms

Dark photon: Proposed force carrier for dark matter, interacts with SM photon via kinetic mixing

Simulation: Proton-proton collisions at 14 TeV, added decay channel ( )

ML approach: AdaBoost model for binary classi�cation, genetic algorithm for hyperparameter tuning

Hyperparameters optimized: number of estimators, learning rate

Dataset: 500,000 points, only 25 with dark photon production (extreme imbalance)

Results:

Overall accuracy: 99.995%

Accuracy for dark photon events: 80%, no false positives

Conclusion: Promising for beam experiments, but advanced techniques needed to address imbalance

Potential improvements: Reinforcement Learning, XGBoost

π →0 γ + γ′
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Questions?
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