BIRTH OF THE FIRST STARS AMIDST DECAYING AND ANNIHILATING DARK MATTER

WENZER QIN Aug 27th, 2024 | TeVPA

In collaboration with Hongwan Liu, Julian Muñoz, and Tracy Slatyer

Center *for* Theoretical Physics

Two considerations in searching for dark matter

- What are the most model-independent signatures of dark matter we can look for?
- What *new data* is coming out that we can leverage?

Two considerations in searching for dark matter

What are the most model-independent signatures of dark matter we can look for?

E.g., exotic energy injection

• What *new data* is coming out that we can leverage?

Two considerations in searching for dark matter

What are the most model-independent signatures of dark matter we can look for?

E.g., exotic energy injection

What new data is coming out that we can leverage?

High redshifts: 21cm cosmology, JWST, etc. First look at the first stars and galaxies

- The collapse of a halo into stars becomes a complicated and highly nonlinear process → requires simulations
- We will pave the way for simulations by identifying the most interesting models for study

EXOTIC ENERGY INJECTION

- Energy injected into electromagnetic observables, not by processes in ΛCDM/Standard Model
- Focus on decaying dark matter
- Could generalize results to
 - Annihilating dark matter
 - Evaporating primordial black holes
 - Accreting primordial black holes

WHAT IS YOUR MODEL/LAGRANGIAN?

- Do not require specific particle physics model; only need
 - Redshift dependence of energy injection rate
 - Spectrum of primary particles
- E.g. for decaying dark matter, we need to specify
 - Dark matter mass
 - Interaction rate/decay lifetime
 - Focus on decay to electrons/positron

etc...

- Download at <u>https://github.com/hongwanliu/DarkHistory</u>
- Calculates global temperature, ionization, and background radiation, while including models of exotic energy injection

Liu, **WQ**, et al. 2023 (arXiv:2303.07370)

 $\chi \chi \rightarrow b \bar{b}, m_{\chi} = 50 \text{ GeV}$ $\langle \sigma v \rangle = 2 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$

10

Redshift (1+z)

 10^{2}

10

Matter Temperature T_m [K]

- Download at https://github.com/hongwanliu/DarkHistory
- Calculates global temperature, jor radiation, while including me

Fresh off the press! arXiv:2408.13305

Planck, 143 GHz band Planck, 3 bands CVL

10

12

f(z=300)

8

EARLY STAR FORMATION

First halos cool/collapse via molecular hydrogen (H₂)
 Heating, ionization, and background radiation all affect formation of H₂

$$H + e^{-} \rightarrow H^{-} + H^{-} + H^{-} \rightarrow H_{2} + e^{-}$$
$$H^{-} + \gamma \rightarrow H + e^{-}$$
$$H_{2} + \gamma \rightarrow H_{2}^{*} \rightarrow 2H$$

COLLAPSING HALOS

- Treat gas as spherical top-hat (uniform density)
- Smaller halos \rightarrow less efficient at cooling, stay pressure-supported

COLLAPSING HALOS

- Treat gas as spherical top-hat (uniform density)
- Smaller halos \rightarrow less efficient at cooling, stay pressure-supported
- Larger halos \rightarrow cooling wins, runaway collapse, form stars

CRITICAL COLLAPSE

Calculate the halo mass above which halos collapse

CRITICAL COLLAPSE

- Calculate the halo mass above which halos collapse
- How does dark matter energy injection affect this value?

STAR FORMATION AFFECTS 21CM

STAR FORMATION AFFECTS 21CM

CONCLUSION

- Exotic heating/ionization/radiation have competing effects on star formation: models can both accelerate/delay star formation
- Potentially detectable in upcoming 21cm data
- Future directions
 - Detailed hydrodynamical simulations
 - Impact on first black hole formation

BACKUP SLIDES

 10^{-1}

Redshift, 1+z

- Evolve halo until virialized
 - Either density reaches $ho_{
 m vir} = 18\pi^2
 ho_0(1+z)^3$
 - Or temperature reaches virial temperature

- After virialization
 - Hold density fixed and continue to evolve other quantities

- After virialization
 - Hold density fixed and continue to evolve other quantities
- Halo cools fast enough to collapse if temperature drops substantially within a Hubble time
 - $T_{\text{halo}}(\eta z_{\text{vir}}) \leq \eta T_{\text{halo}}(z_{\text{vir}})$ with $\eta \approx 2/3$

INCLUDING EXOTIC ENERGY INJECTION

- DarkHistory tracks how energy is deposited into heat, ionization, and radiation globally
- We assume the energy deposition per baryon is the same in the halo and include this in the halo evolution
 - Justified by following simplified cascades
 - Assumption is valid for most decaying dark matter models

Let's examine effects one by one

Heating: counters molecular cooling, raises threshold for collapse

Ionization: more free e⁻ catalyze H₂ formation, so more cooling

- Small effect from H⁻ detachment
- Lyman-Werner background raises threshold (uncertain astrophysics)

- Adding them all up...net effect can be redshift dependent
- Bracket effects of LW radiation

OTHER CHANNELS

OTHER CHANNELS

HOW TO PROBE STAR FORMATION?

- 21cm cosmology:
 - Hyperfine transition of neutral hydrogen \rightarrow 21cm line photons
 - Lots of neutral hydrogen before stars form/reionization

HOW TO PROBE STAR FORMATION?

- 21cm cosmology:
 - Hyperfine transition of neutral hydrogen \rightarrow 21cm line photons
 - Lots of neutral hydrogen before stars form/reionization
- Predicted signals depend on timing of star formation

SIMPLIFIED CASCADE

Electron Kinetic Energy	$1 \rightarrow 2$	2	$2 \rightarrow 3$	3	3 ightarrow 4	4	$4 \rightarrow 5$
$114\mathrm{MeV}$	ICS	$< 13.6\mathrm{eV}\ \gamma$ (ICS,2)	No Ionization /Heating	_	_	_	_
$14-60\mathrm{MeV}$	ICS	13.6–230 eV γ	Photoionization	$0-215 \text{eV} e^{-}_{(\text{ICS},3)}$	e^- Atomic	-	-
$60350\mathrm{MeV}$	ICS	0.23–8 keV γ	Photoionization	$0.215 - 8 \text{ keV } e^{-}$	e^- Atomic	_	_
$0.35 – 1.37 \mathrm{GeV}$	ICS	8–120 keV γ	Compton	$0.125-30 \mathrm{keV} e^{-}_{\mathrm{(ICS,3)}}$	e^- Atomic	_	_
$1.37 - 10 \mathrm{GeV}$	ICS	$0.126.4\text{MeV}~\gamma_{(\text{ICS},2)}$	Compton	$0.03-1.8{ m MeV}~e^-$	ICS	$< 13.6\mathrm{eV}\ \gamma$	No Ionization /Heating

SIMPLIFIED CASCADE

Photon Energy	$1 \rightarrow 2$	2	$2 \rightarrow 3$	3	$3 \rightarrow 4$	4	$4 \rightarrow 5$	5	$5 \rightarrow 6$
$10-120\mathrm{keV}$	Compton	$0.125-30 \mathrm{keV} e^{-}_{(\gamma,2)}$	e^{-} Atomic	_	_	_	_		
$0.1214\mathrm{MeV}$	Compton	$0.03 - 14 {\rm MeV}~e^{-1}$	ICS	$< 13.6 \mathrm{eV} \gamma$ $(\gamma, 3)$	No Ionization /Heating	_	_		
$14-60\mathrm{MeV}$	Compton	$14-60 \mathrm{MeV} e^{-}_{(\gamma,2)}$	ICS	13.6–230 eV γ	Photo- ionization	$0-215 {\rm eV} e^{-}_{\rm (ICS,t)}$	e^{-} Atomic		
$60120\mathrm{MeV}$	H Pair Production	$30-60 { m MeV}e^{(\gamma,2)}$	ICS	58–230 eV γ	Photo- ionization	$43-215 \text{eV} e^{-}_{(\text{ICS},t)}$	e^{-} Atomic		
$120-700\mathrm{MeV}$	H Pair Production	60–350 MeV e^-	ICS	$0.1458\text{keV}\gamma_{(\gamma,3)}$	Photo- ionization	$0.13-8{ m keV}e^{(\gamma,{ m s})}$	e^{-} Atomic		
$0.7–2.8{ m GeV}$	H Pair Production	$0.35 - 1.4 \text{GeV} e^{-1}$	ICS	$\mathop{\scriptstyle 8-120\rm keV}_{(\gamma,3)} \gamma$	Compton	$0.125-30 {\rm keV} e^{-}_{(\gamma,{ m s})}$	e^{-} Atomic		
2.8–10 GeV	H Pair Production	$1.4-5{ m GeV}~e^-$	ICS	$\frac{120-450\mathrm{keV}}{_{(\gamma,3)}}\gamma$	Compton	$30-400 {\rm keV} e^-$	ICS	$< 10.2{\rm eV}_{(\gamma,{\rm t})} \gamma$	No Ionization /Heating