Primordial black hole probes of heavy neutral leptons

Agnese Tolino

IFIC (CSIC-UV)

Based on arXiv:2405.00124,

in collaboration with Yuber F. Perez-Gonzalez and Valentina De Romeri

TeV Particle Astrophysics 2024, Chicago

August 27th, 2024

Our work in a nutshell

In arXiv:2405.00124, we estimated the sensitivity of IceCube to Heavy Neutral Leptons (HNLs) decays from a 100s
Primordial Black Hole (PBH) burst

Theoretical framework

Primordial Black Holes (PBHs) might have formed in the Early Universe from the collapse of primordial fluctuations

Hawking, Nature 248 (1974) 30-31 Carr et al., Ann. Rev. Nucl. Part. Sci. 70 (2020) Carr et al., Rept. Prog. Phys. 84 (2021) 11, 116902

- Primordial Black Holes (PBHs) might have formed in the Early Universe from the collapse of primordial fluctuations
- $f \square$ They can be uniquely described by mass $M_{\rm PBH}$, angular momentum J and charge Q

Hawking, Nature 248 (1974) 30-31 Carr et al., Ann. Rev. Nucl. Part. Sci. 70 (2020) Carr et al., Rept. Prog. Phys. 84 (2021) 11, 116902

- ☐ Primordial Black Holes (PBHs) might have formed in the Early Universe from the collapse of primordial fluctuations
- \Box They can be uniquely described by mass M_{PBH} , angular momentum J and charge Q
- \Box Initial masses from $M_{\rm P}\sim 10^{-5}{
 m g}$ to $10^5 M_{\odot}$ depending on the formation time

$$M_{
m PBH}^{
m in} \sim 2 \ 10^5 \gamma \left(rac{t}{1s}
ight) M_{\odot}$$

Hawking, Nature 248 (1974) 30-31

Carr et al., Ann. Rev. Nucl. Part. Sci. 70 (2020) Carr et al., Rept. Prog. Phys. 84 (2021) 11, 116902

Agnese Tolino PBH probes of HNLs

- Primordial Black Holes (PBHs) might have formed in the Early Universe from the collapse of primordial fluctuations
- \square They can be uniquely described by mass M_{PBH} , angular momentum J and charge Q
- \Box Initial masses from $\textit{M}_{\rm P} \sim 10^{-5} g$ to $10^5 \textit{M}_{\odot}$ depending on the formation time

$$M_{\mathrm{PBH}}^{\mathrm{in}} \sim 2 \ 10^5 \gamma \left(\frac{t}{1s}\right) M_{\odot}$$

(See Jessica Turner's plenary talk on Thursday!)

Hawking, Nature 248 (1974) 30-31

Carr et al., Ann. Rev. Nucl. Part. Sci. 70 (2020) Carr et al., Rept. Prog. Phys. 84 (2021) 11, 116902

☐ Hawking predicted that PBHs may lose mass, i.e. evaporate, with temperature

$$\mathcal{T}_{\mathrm{PBH}} = rac{1}{8\pi \mathit{GM}_{\mathrm{PBH}}} \sim 1 \; \mathrm{TeV} \left(rac{10^{10} \; \mathrm{g}}{\mathit{M}_{\mathrm{PBH}}}
ight)$$

Hawking, Nature 248 (1974) 30-31 Carr et al., Ann. Rev. Nucl. Part. Sci. 70 (2020) Carr et al., Rept. Prog. Phys. 84 (2021) 11, 116902 Arbey et al., Eur. Phys. J. C 79 no. 8. (2019) 693

☐ Hawking predicted that PBHs may lose mass, i.e. evaporate, with temperature

$$T_{\mathrm{PBH}} = \frac{1}{8\pi \textit{GM}_{\mathrm{PBH}}} \sim 1 \; \mathrm{TeV} \left(\frac{10^{10} \; \mathrm{g}}{\textit{M}_{\mathrm{PBH}}} \right)$$

 \Box $T_{\rm PBH} \sim (M_{\rm PBH})^{-1}$: the smaller the mass, the **hotter** the PBH!

Hawking, Nature 248 (1974) 30-31

Carr et al., Ann. Rev. Nucl. Part. Sci. 70 (2020)

Carr et al., Rept. Prog. Phys. 84 (2021) 11, 116902 Arbey et al., Eur. Phys. J. C 79 no. 8, (2019) 693

☐ Hawking predicted that PBHs may lose mass, i.e. evaporate, with temperature

$$T_{\mathrm{PBH}} = \frac{1}{8\pi \textit{GM}_{\mathrm{PBH}}} \sim 1 \; \mathrm{TeV} \left(\frac{10^{10} \; \mathrm{g}}{\textit{M}_{\mathrm{PBH}}} \right)$$

- \Box $T_{\rm PBH} \sim (M_{\rm PBH})^{-1}$: the smaller the mass, the **hotter** the PBH!
- \square PBHs lose mass throughout time, with a rate $\sim M_{
 m PBH}^{-2}$

Hawking, Nature 248 (1974) 30-31

Carr et al., Ann. Rev. Nucl. Part. Sci. 70 (2020)

Carr et al., Rept. Prog. Phys. 84 (2021) 11, 116902 Arbev et al., Eur. Phys. J. C 79 no. 8, (2019) 693

Agnese Tolino PBH probes of HNLs 3/11

☐ Hawking predicted that PBHs may lose mass, i.e. evaporate, with temperature

$$T_{\mathrm{PBH}} = \frac{1}{8\pi \textit{GM}_{\mathrm{PBH}}} \sim 1 \; \mathrm{TeV} \left(\frac{10^{10} \; \mathrm{g}}{\textit{M}_{\mathrm{PBH}}} \right)$$

- \Box $T_{\rm PBH} \sim (M_{\rm PBH})^{-1}$: the smaller the mass, the **hotter** the PBH!
- \Box PBHs lose mass throughout time, with a rate $\sim M_{\rm PBH}^{-2}$
- ☐ The radiated particles will hence have a semi-thermal spectrum:

$$\left. \frac{dN^i}{dEdt} \right|_{\mathrm{prim}} = \frac{g_i \Gamma\left(M_{\mathrm{PBH}}, E_i\right)}{2\pi \left(\exp\left\{\frac{E_i}{T_{\mathrm{PBH}}}\right\} - (-1)^{2s_i}\right)}$$

where g_i are the particle's dofs, s_i its spin, E_i its energy, Γ the reabsorption coefficient

Hawking, Nature 248 (1974) 30-31

Carr et al., Ann. Rev. Nucl. Part. Sci. 70 (2020)

Carr et al., Rept. Prog. Phys. 84 (2021) 11, 116902

Arbev et al., Eur. Phys. J. C 79 no. 8, (2019) 693

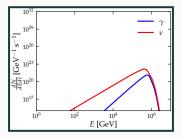


Figure 1: Primary spectrum of γ and ν from a 10 8 g PBH ($T_{\rm PBH}\sim 10^5$ GeV) with BlackHawk v2.3 (Arbey&al.2019)

Hawking, Nature 248 (1974) 30-31 Carr et al., Ann. Rev. Nucl. Part. Sci. 70 (2020) Carr et al., Rept. Prog. Phys. 84 (2021) 11, 116902 Arbey et al., Eur. Phys. J. C 79 no. 8, (2019) 693

☐ In the final stage of evaporation, the PBH quickly becomes **hotter** and hence emits a **burst of particles**

Hawking, Nature 248 (1974) 30-31

Carr et al., Ann. Rev. Nucl. Part. Sci. 70 (2020)

Carr et al. Rept.Prog.Phys. 84 (2021) 11, 116902

Arbey et al., Eur. Phys. J. C 79 no. 8, (2019) 693

- In the final stage of evaporation, the PBH quickly becomes hotter and hence emits a burst of particles
- □ Very massive particles *i* can be emitted, up to $m_i \sim T_{PBH}$:

$$\left. \frac{dN^{i}}{dEdt} \right|_{\text{prim}} = \frac{g_{i}\Gamma\left(M_{\text{PBH}}, E_{i}\right)}{2\pi\left(\exp\left\{\frac{E_{i}}{T_{\text{PBH}}}\right\}\right) - (-1)^{2s_{i}}\right)}$$

Hawking, Nature 248 (1974) 30-31 Carr et al., Ann. Rev. Nucl. Part. Sci. 70 (2020) Carr et al. Rept.Prog.Phys. 84 (2021) 11, 116902

Arbev et al., Eur. Phys. J. C 79 no. 8, (2019) 693

- In the final stage of evaporation, the PBH quickly becomes hotter and hence emits a burst of particles
- □ Very massive particles *i* can be emitted, up to $m_i \sim T_{PBH}$:

$$\left. \frac{dN^{i}}{dEdt} \right|_{\text{prim}} = \frac{g_{i}\Gamma\left(M_{\text{PBH}}, E_{i}\right)}{2\pi\left(\exp\left\{\frac{E_{i}}{T_{\text{PBH}}}\right\}\right) - (-1)^{2s_{i}}\right)}$$

→ also BSM particles, as Heavy Neutral Leptons (HNLs)!

Hawking, Nature 248 (1974) 30-31

Carr et al., Ann. Rev. Nucl. Part. Sci. 70 (2020)

Carr et al. Rept.Prog.Phys. 84 (2021) 11, 116902

Arbey et al., Eur. Phys. J. C 79 no. 8, (2019) 693

- In the final stage of evaporation, the PBH quickly becomes hotter and hence emits a burst of particles
- □ Very massive particles *i* can be emitted, up to $m_i \sim T_{PBH}$:

$$\left. \frac{dN^{i}}{dEdt} \right|_{\text{prim}} = \frac{g_{i} \Gamma\left(M_{\text{PBH}}, E_{i}\right)}{2\pi\left(\exp\left\{\frac{E_{i}}{T_{\text{PBH}}}\right\}\right) - (-1)^{2s_{i}}\right)}$$

- → also BSM particles, as Heavy Neutral Leptons (HNLs)!
- lacksquare 1 PBH with $M_{
 m PBH}^{in}\sim 10^{15}
 m g$, exploding now in a 100s burst ($M_{
 m PBH}^{now}\sim 6.2 imes 10^9
 m g)$

Hawking, Nature 248 (1974) 30-31

Carr et al., Ann. Rev. Nucl. Part. Sci. 70 (2020)

Carr et al. Rept.Prog.Phys. 84 (2021) 11, 116902

Arbey et al., Eur. Phys. J. C 79 no. 8, (2019) 693

☐ Sterile neutrinos or **Heavy Neutral Leptons (HNLs)** appear in several motivated extensions of the SM to accommodate neutrino masses

Abdullahi et al., J. Phys. G 50 no. 2, (2023) 020501

- ☐ Sterile neutrinos or **Heavy Neutral Leptons (HNLs)** appear in several motivated extensions of the SM to accommodate neutrino masses
- ☐ Phenomenological study: 1 HNL

- ☐ Sterile neutrinos or **Heavy Neutral Leptons (HNLs)** appear in several motivated extensions of the SM to accommodate neutrino masses
- ☐ Phenomenological study: 1 HNL
- ☐ Lepton mixing matrix:

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \end{pmatrix}$$

Abdullahi et al., J. Phys. G 50 no. 2, (2023) 020501

- ☐ Sterile neutrinos or **Heavy Neutral Leptons (HNLs)** appear in several motivated extensions of the SM to accommodate neutrino masses
- ☐ Phenomenological study: 1 HNL
- ☐ Lepton mixing matrix:

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \end{pmatrix} \Rightarrow |U_{\alpha 4}|^2 \text{ mixing between } \nu_e, \nu_\mu, \nu_\tau \text{ and } \nu_4$$

Abdullahi et al., J. Phys. G 50 no. 2, (2023) 020501

- ☐ Sterile neutrinos or **Heavy Neutral Leptons (HNLs)** appear in several motivated extensions of the SM to accommodate neutrino masses
- ☐ Phenomenological study: 1 HNL
- ☐ Lepton mixing matrix:

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \end{pmatrix} \Rightarrow |U_{\alpha 4}|^2 \text{ mixing between } \nu_e, \, \nu_\mu, \, \nu_\tau \text{ and } \nu_4$$

 \Box 1 $|U_{\alpha 4}|^2 \neq 0$ at time: 1:0:0, 0:1:0, 0:0:1

☐ Photons are a smoking gun of PBH burst

H.E.S.S. Collaboration, ICRC2013, p. 0930. 7 (2013)
Milagro et al., Astropart. Phys. 64 (2015) 4-12
HAWC Collaboration, JCAP, 04 (2020) 026
Fermi-LAT Collaboration, Astrophys. J., 857, no. 1, (2018) 49
VERITAS Collaboration, PoS ICRC2017, (2018) 691
Carr et al., Rep., Prog. Phys. 84, 116902 (2021)
Perez-Gonzalez, PRD 108 no. 8, (2023) 083014
H.E.S.S. Collaboration, JCAP 04 (2023) 040
LecCube Collaboration, PRD, 99 no. 3, (2019) 032004
LecCube Collaboration, PRL, 124 no. 5, (2020) 051103

- ☐ Photons are a smoking gun of PBH burst
 - ightharpoonup 1 PBH at $d_{\mathrm{PBH}} \leq 1$ pc compatible with constraints from gamma-ray bursts searches (H.E.S.S., Milagro, VERITAS...) and overdensities (Carr&al.2021 and Perez-Gonzalez2023)

H.E.S.S. Collaboration, ICRC2013, p. 0930. 7 (2013)
Milagro et al., Astropart. Phys. 64 (2015) 4-12
HAWC Collaboration, JCAP, 04 (2020) 026
Fermi-LAT Collaboration, Astrophys. J., 857, no. 1, (2018) 49
VERITAS Collaboration, PoS ICRC2017. (2018) 691
Carr et al., Rep., Prog. Phys. 84, 116902 (2021)
Perez-Gonzalez, PRD 108 no. 8, (2023) 083014
H.E.S.S. Collaboration, JCAP 04 (2023) 040
IceCube Collaboration, PRD, 19 no. 3, (2019) 032004
IceCube Collaboration, PRL, 124 no. 5, (2020) 051103

- Photons are a smoking gun of PBH burst
 - ightharpoonup 1 PBH at $d_{\mathrm{PBH}} \leq 1$ pc compatible with constraints from gamma-ray bursts searches (H.E.S.S., Milagro, VERITAS...) and overdensities (Carr&al.2021 and Perez-Gonzalez2023)
- ☐ Another signature of the burst: very energetic **neutrinos**

H.E.S.S. Collaboration, ICRC2013, p. 0930. 7 (2013)
Milagro et al., Astropart. Phys. 64 (2015) 4-12
HAWC Collaboration, JCAP, 04 (2020) 026
Fermi-LAT Collaboration, Astrophys. J., 857, no. 1, (2018) 49
VERITAS Collaboration, PoS ICRC2017, (2018) 691
Carr et al., Rep., Prog. Phys. 84, 116902 (2021)
Perez-Gonzalez, PRD 108 no. 8, (2023) 083014
H.E.S.S. Collaboration, JCAP 04 (2023) 040
IceCube Collaboration, PRD, 99 no. 3, (2019) 032004
IceCube Collaboration, PRD, 124 no. 5, (2020) 051103

- Photons are a smoking gun of PBH burst
 - → 1 PBH at d_{PBH} ≤ 1 pc compatible with constraints from gamma-ray bursts searches (H.E.S.S., Milagro, VERITAS...) and overdensities (Carr&al.2021 and Perez-Gonzalez2023)
- ☐ Another signature of the burst: very energetic neutrinos
- $lue{}$ IceCube could detect muonic neutrinos ν_{μ} from the burst
 - → Right energy range: 100 10⁸ GeV

H.E.S.S. Collaboration, ICRC2013, p. 0930. 7 (2013)
Milagro et al., Astropart. Phys. 64 (2015) 4-12
HAWC Collaboration, JCAP, 04 (2020) 026
Fermi-LAT Collaboration, Astrophys. J., 857, no. 1, (2018) 49
VERITAS Collaboration, PoS ICRC2017, (2018) 691
Carr et al., Rep., Prog. Phys. 84, 116902 (2021)
Perez-Gonzalez, PRD 108 no. 8, (2023) 083014
H.E.S.S. Collaboration, JCAP 04 (2023) 040
IceCube Collaboration, PRD, 99 no. 3, (2019) 032004
IceCube Collaboration, PRL, 124 no. 5, (2020) 051103

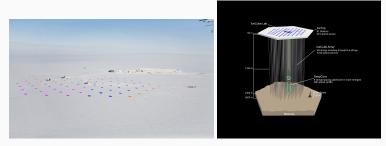


Figure 2: IceCube Neutrino Observatory. Credits: the IceCube collaboration

- Photons are a smoking gun of PBH burst
 - ightharpoonup 1 PBH at $d_{\mathrm{PBH}} \leq 1$ pc compatible with constraints from gamma-ray bursts searches (H.E.S.S., Milagro, VERITAS...) and overdensities (Carr&al.2021 and Perez-Gonzalez2023)
- ☐ Another signature of the burst: very energetic neutrinos
- $lue{}$ IceCube could detect muonic neutrinos ν_{μ} from the burst
 - → Right energy range: 100 10⁸ GeV
- ☐ HNLs decay into muonic neutrino might produce a visible excess at IceCube

H.E.S.S. Collaboration, ICRC2013, p. 0930. 7 (2013)
Milagro et al., Astropart. Phys. 64 (2015) 4-12
HAWC Collaboration, JCAP, 04 (2020) 026
Fermi-LAT Collaboration, Astrophys. J., 857, no. 1, (2018) 49
VERITAS Collaboration, PoS ICRC2017, (2018) 691
Carr et al., Rep., Prog. Phys. 84, 116902 (2021)
Perez-Gonzalez, PRD 108 no. 8, (2023) 083014
H.E.S.S. Collaboration, JCAP 04 (2023) 040
IceCube Collaboration, PRD, 99 no. 3, (2019) 032004
IceCube Collaboration, PRL, 124 no. 5, (2020) 051103

Analysis and Results

The **expected spectrum** at IceCube from a 100s PBH burst will receive contributions from SM processes and HNL decays:

The **expected spectrum** at IceCube from a 100s PBH burst will receive contributions from SM processes and HNL decays:

$$\left.\frac{dN_{\nu_{\mu}}}{dE}\right|_{\mathrm{SM}} = \left.\frac{dN_{\nu_{\mu}}}{dE}\right|_{\mathrm{prim}} + \left.\frac{dN_{\nu_{\mu}}}{dE}\right|_{\mathrm{sec}}$$

The **expected spectrum** at IceCube from a 100s PBH burst will receive contributions from SM processes and HNL decays:

$$\left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\mathrm{SM}} = \left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\mathrm{prim}} + \left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\mathrm{sec}}$$

$$\left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\mathsf{HNL}} = \left\{ \begin{array}{l} \frac{dN_{\nu_{\mu}}}{dE} \Big|_{\nu_{4} \rightarrow \nu \nu \nu} + \left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\nu_{4} \rightarrow \nu \pi}, & \text{ if } m_{4} \in [0.1,1] \, \mathsf{GeV} \\ \\ \frac{dN_{\nu_{\mu}}}{dE} \Big|_{\nu_{4} \rightarrow H/Z\nu} + \left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\nu_{4} \rightarrow W\mu}, & \text{ if } m_{4} \in [0.5,2] \, \mathsf{TeV} \end{array} \right. \label{eq:dN_epsilon}$$

The **expected spectrum** at IceCube from a 100s PBH burst will receive contributions from SM processes and HNL decays:

$$\left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\mathrm{SM}} = \left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\mathrm{prim}} + \left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\mathrm{sec}}$$

$$\left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\mathsf{HNL}} = \left\{ \begin{array}{l} \frac{dN_{\nu_{\mu}}}{dE} \bigg|_{\nu_{4} \rightarrow \nu \nu \nu} + \left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\nu_{4} \rightarrow \nu \pi}, & \text{if } m_{4} \in [0.1,1] \, \mathsf{GeV} \\ \\ \frac{dN_{\nu_{\mu}}}{dE} \bigg|_{\nu_{4} \rightarrow H/Z\nu} + \left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\nu_{4} \rightarrow W\mu}, & \text{if } m_{4} \in [0.5,2] \, \mathsf{TeV} \end{array} \right.$$

The **expected spectrum** at IceCube from a 100s PBH burst will receive contributions from SM processes and HNL decays:

$$\left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\mathrm{SM}} = \left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\mathrm{prim}} + \left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\mathrm{sec}}$$

$$\left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\mathsf{HNL}} = \left\{ \begin{array}{l} \frac{dN_{\nu_{\mu}}}{dE} \Big|_{\nu_{4} \rightarrow \nu \nu \nu} + \left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\nu_{4} \rightarrow \nu \pi}, & \text{ if } m_{4} \in [0.1, 1] \, \mathsf{GeV} \\ \\ \frac{dN_{\nu_{\mu}}}{dE} \Big|_{\nu_{4} \rightarrow H/Z\nu} + \left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\nu_{4} \rightarrow W\mu}, & \text{ if } m_{4} \in [0.5, 2] \, \mathsf{TeV} \end{array} \right.$$

Quick **example** of expected signal $\left. \frac{dN_{\nu_{\mu}}}{dE} \right|_{\mathrm{HNL}}$:

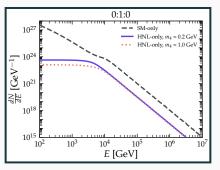


Figure 2: SM-only and HNL-only time-integrated spectrum of ν_{μ} at Earth for $\tau=$ 100s for two test-masses and 0.1:0

Sensitivities at IceCube - the analysis

 $\hfill \Box$ We evaluated the **expected number of** ν_{μ} at IceCube emitted in a 100s PBH burst from HNL + SM

IceCube Collaboration, PRL, 124 no. 5, (2020) 051103

Sensitivities at IceCube - the analysis

- $\hfill \Box$ We evaluated the **expected number of** ν_{μ} at IceCube emitted in a 100s PBH burst from HNL + SM
- $\ \square$ We focused on ν_{μ} arriving to the **northern emisphere** to minimize atmospheric background

IceCube Collaboration, PRL, 124 no. 5, (2020) 051103

Sensitivities at IceCube - the analysis

- \Box We evaluated the **expected number of** ν_{μ} at IceCube emitted in a 100s PBH burst from HNL + SM
- $\hfill \Box$ We focused on ν_μ arriving to the northern emisphere to minimize atmospheric background
- $\ \square$ We estimated the IceCube sensitivities to HNL decays from a 100s PBH burst with a simple χ^2 analysis

IceCube Collaboration, PRL, 124 no. 5, (2020) 051103

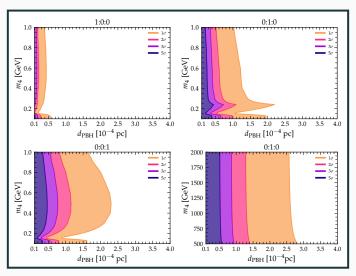


Figure 3: IceCube sensitivity to HNLs from a PBH burst lasting 100s; correction to arXiv:2405.00124

Agnese Tolino PBH probes of HNLs 9/11

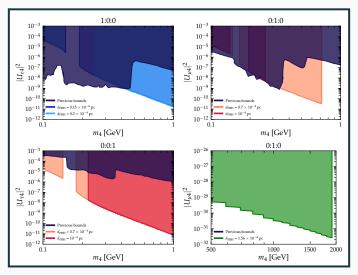


Figure 4: Expected IceCube sensitivity at 90% CL for a 100s PBH burst; correction to arXiv:2405.00124

Conclusions

Conclusions

- $\ \Box$ We evaluated the ν_{μ} signal at IceCube from the decay of HNLs emitted in a 100s PBH burst
 - → Two HNL mass ranges: [0.1-1] GeV and [0.5-2] TeV
 - \rightarrow Three mixing scenarios: ν_e , ν_μ or ν_τ mixing with ν_4 , i.e. 1:0:0, 0:1:0, 0:0:1
- \Box We found that in [0.1-1] GeV, 0:1:0 and 0:0:1 would give visible signals if the PBH burst occurs at 10^{-4} pc
- $\hfill\Box$ The [0.5-2] TeV range, 0:1:0, accesible at $2.5\times10^{-4}~pc$
- $oldsymbol{\square}$ IceCube would be able to set stringent constraints on m_4 and $|U_{lpha 4}|^2$

Agnese Tolino PBH probes of HNLs 11/11

Thanks for your attention!

Questions?

Bounds on exploding PBHs - I

- ☐ Photons are a smoking gun of exploding PBHs
 - → constraints on searches for gamma-ray bursts from H.E.S.S.. Milagro. VERITAS. Fermi-LAT. HAWK
- ☐ Strongest constraint on the **PBH burst rate** from H.E.S.S. collaboration

$$\dot{n}_{\rm PBH} \sim 2000 {\rm pc}^{-3} {\rm yr}^{-1}$$

☐ Bounds on **overdensities** (Carr&al.2021 + Perez-Gonzalez2023):

$$n_{\mathrm{PBH}} \lesssim 0.35 \left(\frac{\beta'}{10^{-29}} \right) \left(\frac{10^{15} \mathrm{g}}{M_{\mathrm{PBH}}^{\mathrm{in}}} \right) \mathrm{pc}^{-3},$$

In 1pc³ for $\beta' < 10^{-29}$ we expect ~ 1.5 exploding PBH

 \Box Hence, expecting 1 PBH at $d_{PBH} < 1$ pc from Earth is compatible with bounds

H.E.S.S. Collaboration, ICRC2013, p. 0930. 7 (2013)

Milagro et al., Astropart, Phys. 64 (2015) 4-12

HAWC Collaboration, JCAP, 04 (2020) 026

Fermi-LAT Collaboration, Astrophys. J., 857, no. 1, (2018) 49

VERITAS Collaboration, PoS ICRC2017, (2018) 691

Carr et al., Rep., Prog. Phys. 84, 116902 (2021) Perez-Gonzalez, PRD 108 no. 8, (2023) 083014

H.E.S.S. Collaboration, JCAP 04 (2023) 040

Bounds on exploding PBHs - II

$$\beta^\prime \sim 10^{-9} \frac{\Omega_{\rm PBH}}{\Omega_{\rm DM}} \left(\frac{M_{\rm PBH}^{\rm in}}{M_{\odot}} \right)^{1/2}$$

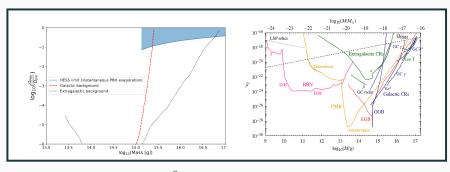


Figure 5: Bounds on β' and $\frac{\Omega_{\rm PBH}}{\Omega_{\rm DM}}.$ Left: from H.E.S.S. 2023, right from Carr 2021.

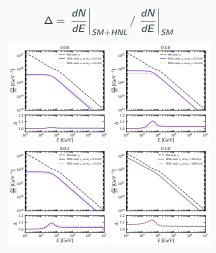
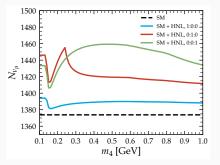



Figure 6: Total time-integrated spectrum of muon neutrinos expected at the Earth from the evaporation of a PBH for an observation time of $\tau=100~\text{s.}$ In each panel, we show the SM-only contribution (black, dashed) and the HNL-only contribution for different HNL benchmark masses (solid/dotted, color) and mixings. The smaller panels below each figure depict the relative difference in the spectral shapes between the total (SM + HNL) and SM-only contributions Δ .

Figure 7: Expected number of muon-neutrino events at IceCube as a function of the HNL mass, from the last stages (100 s) of an evaporating PBH located at a distance $d_{\rm PBH}=10^{-4}$ pc from Earth and at a declination angle [$30^{\circ}<\delta<90^{\circ}$]. The black dashed curve corresponds to the SM-only case.

List of bounds in the $m_4 |U_{\alpha 4}|^2$ plane

List of bounds of Fig.4:

- ☐ 1:0:0: NA62, T2K, PiENU, BEBC and PS191
- □ 0:1:0: T2K, MicroBooNE, NuTeV, E949
- 0:0:1: T2K, CHARM and constraints from IceCube looking for low-energy "double-bang" events
- + SN 1987A detection bounds, not shown for space limits, up to O(100MeV)

NA62 Collaboration, Phys. Lett. B 807 (2020) 135599
T2K Collaboration, Phys. Rev. D 100 no. 5, (2019) 052006
PIENU Collaboration, Phys. Rev. D 97 no. 7, (2018) 072012
Barouki et al., SciPost Phys. 13 (2022) 118, arXiv:2208.00416
Bernardi et al. Phys. Lett. B 203 (1988) 332-334
MicroBooNE Collaboration, Phys. Rev. D 101 no. 5, (2020) 052001
NuTeV, E815 Collaboration, Phys. Rev. Lett. 83 (1999) 4943-4946
E949 Collaboration, Phys. Rev. D 91 no. 5, (2015) 052001
CHARM II Collaboration, Phys. Lett. B 343 (1995) 453-458
Coloma et al., Phys. Rev. Lett. 119 no. 20, (2017) 201804
Carenza et al., Phys. Rev. D 109 no. 6, (2024) 063010

The neutrino mass matrix

☐ The most general mass term for neutrinos can be written as

$$\begin{split} \mathscr{L}_{\mathsf{RHN}}^m &= -Y_{\alpha i} \overline{L}_{\alpha} \widetilde{H} N_i - \frac{1}{2} M_R^{ij} \overline{N_i^c} N_j + \mathsf{h.c.} \\ &= \frac{1}{2} \overline{\mathcal{N}_L^c} M_{\nu} \mathcal{N}_L + \mathsf{h.c.} \end{split}$$

 $f \square$ After EW symmetry breaking $\mathscr{L}^m_{\mathsf{RHN}}$ becomes

$$\mathscr{L}_{\mathsf{RHN}}^m = -\frac{1}{2} \overline{\mathcal{N}_L^c} M_\nu \mathcal{N}_L + \mathsf{h.c.},$$

with

$$\mathcal{N}_L = \begin{pmatrix} \nu_L \\ (N_R)^c \end{pmatrix}, \quad M_{\nu} = \begin{pmatrix} \mathbf{0}_{3 \times 3} & Y \nu / \sqrt{2} \\ Y^T \nu / \sqrt{2} & M_R \end{pmatrix}$$

Mixing in the lepton sector

 $\ \square$ By diagonalizing the mass matrix $M_{\nu}=\mathcal{U}_{\nu}M_{\nu}^{\mathrm{diag}}\mathcal{U}_{\nu}{}^{T}$ ($\mathcal{U}_{\nu}{}^{T}\mathcal{U}_{\nu}=1$), $\mathscr{L}_{\mathsf{RHN}}^{m}$ is written in terms of the neutrino mass states:

$$\mathcal{N}_{L}^{m} = \mathcal{U}_{\nu}^{T} \mathcal{N}_{L}$$

where \mathcal{U}_{ν} is the unitary $(3+n) \times (3+n)$ diagonalizing mass matrix

lacktriangled The CC lepton mixing matrix is the top $(3+n)\times 3$ submatrix of \mathcal{U}_{ν} $(\mathcal{U}_{I}\sim \mathbb{1}_{3\times 3})$:

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \dots & U_{en} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & \dots & U_{\mu n} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & \dots & U_{\tau n} \end{pmatrix}$$

Details of the spectrum computation - I

Below 1 GeV, the following two channels dominate

$$\nu_4 \rightarrow \nu_\alpha \pi^0,$$

$$\nu_4 \rightarrow \nu_\alpha \nu_\ell \bar{\nu}_\ell \quad (\ell = e, \mu, \tau),$$

where lpha indicates the neutrino flavor that mixes with u_4

The partial decay widths are

$$\Gamma_{\alpha} \left(\nu_4 \to \nu_{\alpha} \pi^0 \right) = 2 \frac{G_F^2 m_4^3}{32 \pi} f_{\pi}^2 |U_{\alpha 4}|^2 \left[1 - \left(\frac{m_{\pi_0}}{m_4} \right)^2 \right]^2 \,,$$

$$\Gamma_{\alpha}\left(\nu_{4} \rightarrow \nu_{\alpha} \sum_{\ell} \nu_{\ell} \bar{\nu}_{\ell}\right) = \sum_{\ell} \left[\Gamma\left(\nu_{4} \rightarrow \nu_{\alpha} \nu_{\ell} \bar{\nu}_{\ell}\right) + \left(\nu_{4} \rightarrow \bar{\nu}_{\alpha} \nu_{\ell} \bar{\nu}_{\ell}\right)\right] = 2 \frac{G_{F}^{2} m_{4}^{5}}{64 \pi^{3}} |U_{\alpha 4}|^{2}.$$

where u_{α} is the neutrino flavour that mixes with u_{4}

Details of the spectrum computation - II

The neutrino spectrum from HNL decay can be computed as

$$\frac{dN_{\alpha}}{dE} = \mathcal{B}_{a} \int d\cos\theta \int_{E_{s,\mathrm{min}}}^{E_{s,\mathrm{max}}} dE_{s} \frac{1}{\gamma_{s} (1 + \beta_{s} \cos\theta)} \frac{dN_{s}}{dE_{s}} \mathcal{F}_{\alpha} \left[\frac{E}{\gamma_{s} (1 + \beta_{s} \cos\theta)}, \cos\theta \right]$$

- \Box E, E_s are the energies of ν_{α} and the HNL in the laboratory frame;
- \square θ is the angle formed between ν_{α} in the HNL rest frame and its velocity in the laboratory frame;
- \square $\mathcal{B}_{\alpha} = \Gamma_{\alpha}/\Gamma_{\rm tot}$ indicates the branching ratio of the decay process;
- \Box $\frac{dN_s}{dE_s}$ is the total primary spectrum of HNLs;
- $oldsymbol{\square}$ \mathcal{F}_a is the angular and energetic distribution of the resulting u_a in the HNL frame

The primary HNL spectra have been evaluated with BlackHawk, as the SM neutrino spectra

Details of the spectrum computation - III

Light-mass regime [0.1-1] GeV

☐ 2-body

$$\left. \frac{dN_{\alpha}}{dE} \right|^{2\mathrm{b}} = \frac{\mathcal{B}_{\alpha} m_4^2}{m_4^2 - m_{\pi^0}^2} \int_{E_{s,\mathrm{min}}}^{E_{s,\mathrm{max}}} dE_s \frac{1}{p_s} \frac{dN_s}{dE_s}.$$

as \mathcal{F}_a is a Dirac delta

☐ 3-body

$$\begin{split} \mathcal{F}_{\mathrm{I},\alpha}^{\mathrm{3b}}\left(E'\right) &= \left.\frac{dN_{\alpha}}{dE'd\mathrm{cos}\theta}\right|_{\mathrm{I}}^{\mathrm{3b}} = \frac{1}{2}16\frac{E'^{2}}{m_{4}^{3}}\left(3-4\frac{E'}{m_{4}}\right)\,,\\ \mathcal{F}_{\mathrm{II},\alpha}^{\mathrm{3b}}\left(E'\right) &= \left.\frac{dN_{\alpha}}{dE'd\mathrm{cos}\theta}\right|_{\mathrm{II}}^{\mathrm{3b}} = \frac{1}{2}96\frac{E'^{2}}{m_{4}^{3}}\left(1-2\frac{E'}{m_{4}}\right)\,. \end{split}$$

If the neutrino mixes with ν_4

$$\begin{split} \mathcal{F}_{\alpha}^{\mathrm{3b}}\left(E'\right) &= \frac{1}{4}\left(3\mathcal{F}_{\mathrm{I}}^{\mathrm{3b}} + \mathcal{F}_{\mathrm{II}}^{\mathrm{3b}}\right)\,.\\ \frac{dN_{\alpha(\ell)}}{dE}\bigg|^{\mathrm{3b}} &= \mathcal{B}_{\alpha}m_{4}\int_{E_{s},\mathrm{min}}^{E_{s},\mathrm{max}}dE_{s}\frac{1}{\rho_{s}}\frac{dN_{s}}{dE_{s}}\int_{E'_{\mathrm{min}}}^{E'_{\mathrm{max}}}dE'\frac{1}{E'}\mathcal{F}_{\alpha(\ell)}^{\mathrm{3b}}\left(E'\right)\,, \end{split}$$

Details of the spectrum computation - $\ensuremath{\mathsf{IV}}$

If only ν_{μ} mixes with ν_{4} , three HNL decay channels are relevant in the [0.5-2] TeV mass range

$$\begin{array}{ccc}
\nu_4 & \to & W^{\pm}\mu^{\mp} ,\\
\nu_4 & \to & Z^0\nu_{\mu} ,\\
\nu_4 & \to & H^0\nu_{\mu} .
\end{array}$$

with partial decay widths

$$\begin{split} &\Gamma\left(\nu_{4} \rightarrow \mu W_{L}\right) = 2\frac{g^{2}}{64\pi M_{W}^{2}} |U_{\mu 4}|^{2} m_{4}^{3} \left[1 - \left(\frac{M_{W}}{m_{4}}\right)^{2}\right]^{2} \,, \\ &\Gamma\left(\nu_{4} \rightarrow \mu W_{T}\right) = 2\frac{g^{2}}{32\pi} |U_{\mu 4}|^{2} m_{4} \left[1 - \left(\frac{M_{W}}{m_{4}}\right)^{2}\right]^{2} \,, \\ &\Gamma\left(\nu_{4} \rightarrow \nu_{\mu} Z_{L}^{0}\right) = \frac{g^{2}}{64\pi M_{Z}^{2}} |U_{\mu 4}|^{2} m_{4}^{3} \left[1 - \left(\frac{M_{Z}}{m_{4}}\right)^{2}\right]^{2} \,, \\ &\Gamma\left(\nu_{4} \rightarrow \nu_{\mu} Z_{T}^{0}\right) = \frac{g^{2}}{32\pi \cos^{2}\theta_{W}} |U_{\mu 4}|^{2} m_{4} \left[1 - \left(\frac{M_{Z}}{m_{4}}\right)^{2}\right]^{2} \,, \\ &\Gamma\left(\nu_{4} \rightarrow \nu_{\mu} H^{0}\right) = \frac{g^{2}}{64\pi M_{H}^{2}} |U_{\mu 4}|^{2} m_{4}^{3} \left[1 - \left(\frac{M_{H}}{m_{4}}\right)^{2}\right]^{2} \end{split}$$

Details of the spectrum computation - V

The resulting spectrum will be

$$\frac{dN_{\nu_{\mu}}}{dE} = \sum_{\text{i.s.}} \mathcal{B}(\nu_4 \rightarrow \text{i.s.}) \ m_4 \int_{E_s, \mathrm{min}}^{E_s, \mathrm{max}} dE_s \frac{1}{\rho_s} \frac{dN_s}{dE_s} \int_{E_{\mathrm{min}}'}^{E_{\mathrm{max}}'} dE' \frac{1}{E'} \frac{dN}{dE'} \left(\nu_4 \rightarrow \text{i.s.} \rightarrow \nu_{\mu}\right) \,,$$

where PPPC4DM has been employed to evaluate $\frac{dN}{dE^\prime}$

Details of the χ^2 analysis

 \Box The expected $N_{\nu_{\mu}}$ at IceCube depends on the **declination angle** δ and the **effective area** $\mathcal{A}_{\mathrm{eff}}$:

$$N_{
u_{\mu}}\left(\delta
ight) = rac{1}{4\pi d_{\mathrm{PBH}}^{2}} \int dE \left. rac{dN_{
u_{\mu}}}{dE}
ight|_{\mathrm{HNL+SM}} \mathcal{A}_{\mathrm{eff}}(E,\delta)$$

- \Box Little atmospheric background for ν_{μ} from the northern hemisphere (if $\tau_{\rm obs}\sim$ 100s)
 - $\Rightarrow \ \operatorname{set} \ \delta \in [30\deg, 90\deg]$
- $f \square$ Sensitivity at IceCube estimated with χ^2 test statistics :

$$\chi^2 = \frac{\left(N_{\nu_\mu}^{\rm HNL+SM} - N_{\nu_\mu}^{\rm SM}\right)^2}{N_{\nu_\mu}^{\rm SM}}$$

(negligible background and d_{PBH} nuisance)