DARK MATTER MINI HALOS FROM PRIMORDIAL MAGNETIC FIELDS Phys. Rev. Lett. 131, 231002

Pranjal Ralegankar

Postdoctoral scientist, SISSA

Image source: Pauline Voß for Quanta Magazine

UBIQUITOUS MAGNETIC FIELDS

PRIMORDIAL: PRODUCED BY BIG BANG PLASMA

PRIMORDIAL MAGNETIC FIELDS ENHANCE DENSITY PERTURBATIONS

PRIMORDIAL MAGNETIC FIELDS ENHANCE DENSITY PERTURBATIONS

PRIMORDIAL MAGNETIC FIELDS ENHANCE DENSITY PERTURBATIONS

PRIMORDIAL MAGNETIC FIELDS ENHANCE POWER SPECTRUM ON SMALL SCALES

BACKREACTION FROM BARYONS SUPPRESSES BARYON DENSITY PERTURBATIONS BELOW MAGNETIC DAMPING (JEANS) SCALE

EARLIER WORKS FOCUSED ON SCALES BELOW MAGNETIC DAMPING (JEANS) SCALE

MY STUDY FOCUSES ON SCALES BELOW MAGNETIC DAMPING (JEANS) SCALE

FINDING: HIGHLY ENHANCED POWER SPECTRUM BELOW JEANS SCALE

FINDING: BARYON PERTURBATION SUPPRESSED BELOW JEANS SCALE BUT NOT DARK MATTER!

NON-RELATIVISTIC IDEAL MHD IN PHOTON DRAG REGIME

 $\frac{\partial (a^2 \vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times a^2 \vec{B})}{a}$ $\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b + \frac{(\vec{v}_b, \nabla)\vec{v}_b}{a} = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a\rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$ $\frac{\partial \delta_b}{\partial t} = -\frac{\nabla . \, \vec{v}_b}{a} - \frac{\nabla . \, (\delta_b \vec{v}_b)}{a}$ $\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$ $\partial^2 \delta_{DM} \left[\partial \ln(a^2 H) \right] \partial \delta_{DM} \nabla^2 \phi$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1\right] \frac{\partial \delta_{DM}}{\partial a a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

NON-RELATIVISTIC IDEAL MHD IN PHOTON DRAG REGIME

PERTURBATION EVOLUTION PLOT

PERTURBATION EVOLUTION PLOT

CONSTRAINTS ON PMF

EVOLUTION OF EARLY UNIVERSE PMFS

RELEVANCE OF DARK MATTER MINIHALO GENERATION

PARAMETER SPACE WITH ENHANCED POWER ON SMALL SCALES

50000 reconnection: $\xi_1 = 0.1 V_{AI} | aH$ 10^{1} CMB: DM minihalo mass 10000 Во Ν 10⁰ 0 06 nG Subscript I 10 $(k)]_{max}$ 1000 refers to the (bu) ¹ 10⁻ Alfvenic P(k)time at the M O \leq \leq No. $\overline{P_{\Lambda CDM}(k)}$ beginning of laminar flow 100 Blazar obs. 40 20 rec. ~ Orec Во 10⁻² nG 10^{-2} ¥0 10 10 11 Present-day PTA 5 nG QCDPT magnetic field $B_0 = 10^{-3} \text{ nG}$ EWPT strength 10^{-3} 2 10⁻² 10⁻⁶ 10⁻⁴ 10 ξ_l (Mpc) Pranjal Ralegankar 20

regime

PARAMETER SPACE WITH ENHANCED POWER ON SMALL SCALES: THEIA SKA SENSITIVITY

regime

PARAMETER SPACE WITH ENHANCED POWER ON SMALL SCALES: PTA SENSITIVITY

Subscript *I* refers to the time at the beginning of laminar flow regime

MINIHALOS FROM CAUSALLY GENERATED PMFS

MINIHALOS FROM CAUSALLY GENERATED PMFS

PMFS TO EXPLAIN COSMIC VOID OBSERVATIONS

Assuming Batchelor spectrum!

UNIVERSE MAYBE FILLED WITH DARK MATTER MINIHALOS!!

Assuming Batchelor spectrum!

SUMMARY AND CONCLUDING REMARKS

- Magnetic fields can enhance power on small scale dark matter distribution gravitationally.
- PTA/GAIA detection of DM minihalos can provide best probe of primordial magnetic fields
- PMFs resolving Hubble tension likely produce minihalos
- Ironic: how invisible dark matter can help look for visible entity: magnetic fields

BACKUP SLIDES

SOLVING MHD EQUATIONS ANALYTICALLY

NON-RELATIVISTIC IDEAL MHD IN PHOTON DRAG REGIME

 $\frac{\partial \ (a^2 \vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times a^2 \vec{B})}{a}$ $\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b + \frac{(\vec{v}_b, \nabla)\vec{v}_b}{a} = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a\rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$ $\frac{\partial \delta_b}{\partial t} = -\frac{\nabla . \, \vec{v}_b}{a} - \frac{\nabla . \, (\delta_b \vec{v}_b)}{a}$ $\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$ 2

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1\right] \frac{\partial \delta_{DM}}{\partial a a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

NON-RELATIVISTIC IDEAL MHD IN PHOTON DRAG REGIME: PHOTON DRAG SUPPRESS CONVECTION

 $\frac{\partial (a^2 \vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times a^2 \vec{B})}{a}$ $\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b + \frac{(\vec{v}_b, \nabla)\vec{v}_b}{a} = \frac{(\nabla \times \vec{B}) \times \vec{B}}{4\pi a\rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$ $\frac{\partial \delta_b}{\partial t} = -\frac{\nabla . \, \vec{v}_b}{a} - \frac{\nabla . \, (\delta_b \vec{v}_b)}{a}$ $\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$ $\begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2$ 2 ~ **7** ~

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{\partial a \partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

SOLVING MAGNETIC FIELD EVOLUTION ANALYTICALLY

SOLVING MAGNETIC FIELD EVOLUTION ANALYTICALLY: LARGE B AND LARGE DRAG LIMIT

$$\frac{\partial (a^2 \vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times a^2 \vec{B})}{a}$$
$$(H + \alpha) \vec{v}_b \approx \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b}$$

$$\frac{\partial (a^2 \vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times a^2 \vec{B})}{a}$$
$$(H + \alpha) \vec{v}_b = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b}$$

$$\langle \vec{B}_0 \frac{\partial \vec{B}_0}{\partial t} \rangle = \langle \frac{\nabla \times (\vec{v}_b \times \vec{B}_0)}{a} \vec{B}_0 \rangle$$

$$\frac{\partial (a^2 \vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times a^2 \vec{B})}{a}$$
$$(H + \alpha) \vec{v}_b = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b}$$

$$\frac{d \ln P_B(k,t)}{d \ln a} = -\frac{4}{3} \frac{k^2 v_A^2}{a^2 H(\alpha + H)} \sim -(k\tau v_b)^2$$

$$\langle \vec{B}_0 \frac{\partial \vec{B}_0}{\partial t} \rangle = \langle \frac{\nabla \times (\vec{v}_b \times \vec{B}_0)}{a} \vec{B}_0 \rangle$$

$$\frac{\partial (a^2 \vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times a^2 \vec{B})}{a}$$
$$(H + \alpha) \vec{v}_b = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b}$$

$$\frac{d \ln P_B(k,t)}{d \ln a} = -\frac{4}{3} \frac{k^2 v_A^2}{a^2 H(\alpha + H)} \sim -(k\tau v_b)^2$$

$$\langle \vec{B}_0 \frac{\partial \vec{B}_0}{\partial t} \rangle = \langle \frac{\nabla \times (\vec{v}_b \times \vec{B}_0)}{a} \vec{B}_0 \rangle$$

$$P_B(k,t) = P_B(k,t_I)e^{-\frac{k^2}{k_D^2}}$$

$$k_D^{-1}(\alpha) \sim \tau v_A \sqrt{\frac{H}{\alpha + H}}$$

Jedamzik et al 1996, Subramanian and Barrow 1997

Jedamzik et al 1996, Subramanian and Barrow 1997

MODELLING BARYON DENSITY PERTURBATIONS

$$\frac{d\ln P_B(k,t)}{d\ln a} = -\frac{4}{3} \frac{k^2 v_A^2}{a^2 H(\alpha + H)} \sim -(k\tau v_b)^2$$

INTO NON-LINEAR REGIME: MODELLING BARYON DENSITY PERTURBATIONS

$$\frac{d \ln P_B(k,t)}{d \ln a} = -\frac{4}{3} \frac{k^2 v_A^2}{a^2 H(\alpha + H)} \sim -(k\tau v_b)^2$$

Divergence of
Lorentz force
$$\frac{\partial \theta_b}{\partial t} + (H + \alpha)\theta_b = \frac{S_0(k)}{a^2} + \frac{c_b^2 k^2 \delta_b}{a}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\theta_b}{a} - \frac{\nabla . (\delta_b \vec{v}_b)}{a}$$

Ignored non-
linear terms in δ_b

COMPARING WITH FULL MHD SIMULATIONS

COMPARING WITH SIMULATIONS: SENSITIVE TO INITIAL POWER SPECTRUM

COMPARING WITH SIMULATIONS: SENSITIVE TO INITIAL POWER SPECTRUM

P_B(k)

MORE PERTURBATION PLOTS

MORE PERTURBATION PLOTS

$$B_0 = 8$$
nG
 $k_I = 10^4 \ Mpc^{-1}$

Pranjal Ralegankar 44