

MicroBooNE's Beyond Standard Model Physics Program

Lee Hagaman (University of Chicago) On behalf of the MicroBooNE Collaboration

August 26, 2024 TeV Particle Astrophysics 2024

MicroBooNE Dark Neutrino e^+e^- Simulation

140

5

MicroBooNE

- Goals: ullet
 - Investigate neutrino anomalies (MiniBooNE LEE) ullet
 - Measure O(GeV) neutrino-argon cross sections
 - Perform beyond-standard-model searches

- Charged particles ionize argon atoms in their trails
- As ionization electrons arrive at our wires, they can be detected with sensitive electronics
- This gives us a school-bus-sized, 85 tonne, millimeter/ MeV-scale-resolution, fully active calorimeter

green = charge Lee Hagaman on behalf of the MicroBooNE Collaboration 3

LArTPC Principle

LArTPC Principle

- Tracks: Simple line segments in the image
 - Indicating a single higher-mass particle (proton, pion, muon, etc.)
- Showers: Branching clusters of many line segments
 - Indicates an electron, positron, or photon, leading to a cascade of electromagnetic activity (electrons, positrons, photons)

Wire Number

Fermilab Neutrino Beams

12.1

MiniBooNE ICARUS MicroBooNE

Fermilab Neutrino Beams

Lee Hagaman on behalf of the MicroBooNE Collaboration 6

Path

SBND

(BNB)

Fermilab Neutrino Beams

Not to scale!

Lee Hagaman on behalf of the MicroBooNE Collaboration 8

MicroBooNE Neutrino Sources

MicroBooNE

Not to scale!

Lee Hagaman on behalf of the MicroBooNE Collaboration 9

MicroBooNE Neutrino Sources

MicroBooNE

MicroBooNE Neutrino Sources

Not to scale!

MicroBooNE Neutrino Sources

Not to scale!

MicroBooNE Neutrino Sources

Not to scale!

MicroBooNE BSM Sources

Not to scale!

Heavy Neutral Leptons

- Heavy neutral leptons are righthanded fermion singlets that could explain neutrino masses, baryon asymmetry, and dark matter
- They mix with SM neutrinos through the extended PMNS matrix
- We reduce neutrino backgrounds by looking for events pointing backwards in the detector, coming from kaon decay at rest in the NuMI absorber

Heavy Neutral Leptons, Track Search

- Probing 260-385 MeV of HNL mass
- Looking for pairs of tracks
 - HNL $\rightarrow \pi^+ + \mu^-$ (or $\pi^- + \mu^+$)

Lee Hagaman on behalf of the MicroBooNE Collaboration 15

4 cm

Phys. Rev. D 106, 092006 (2022)

-	×	10 ²⁰

Heavy Neutral Leptons, Shower Search

- Probing lower HNL masses, 10-245 MeV
- Looking for pairs of showers
 - HNL $\rightarrow \nu + e^+ + e^-$, we see e^+ and e^-
 - HNL $\rightarrow \nu + \pi^0 \rightarrow \nu + 2\gamma$, we see 2γ
 - (first ever search using this decay mode)

Lee Hagaman on behalf of the MicroBooNE Collaboration 16

Phys. Rev. Lett. 132, 041801 (2024)

Higgs Portal Scalars

- Extension to the SM, where an electrically neutral singlet scalar boson mixes with the Higgs boson with a mixing angle θ
- Similarly to HNLs, we reduce neutrino backgrounds by looking for events coming from NuMI absorber kaon decays

Higgs Portal Scalars

- Searched using two methods:
 - Pairs of tracks, $S \rightarrow \mu^+ + \mu^-$
 - Pairs of showers, $S \rightarrow e^+ + e^-$

Lee Hagaman on behalf of the MicroBooNE Collaboration 18

Phys. Rev. Lett. 127, 151803 (2021)

Phys. Rev. D 106, 092006 (2022)

Higgs Portal Scalars

• We recently expanded our $e^+e^$ and decays at rest in the beam target

Lee Hagaman on behalf of the MicroBooNE Collaboration 19

https://agenda.infn.it/event/37867/contributions/229769/

Light Dark Matter

- Dark matter model, sub-WIMP-mass, couples via a dark photon
- DM pairs are produced by neutral meson (π^0 and η) decays from the NuMI target
 - These neutral mesons are not focused by beam magnets, so using the off-axis beam flux is helpful to reduce neutrino backgrounds
- Dark-trident process:
 - DM scattering with argon produces a dark photon which decays to an e^+e^- pairs

Mass regime: $M_{A'} < 2M_{\chi}$

- André de Gouvêa, Patrick J. Fox, Roni Harnik, Kevin J. Kelly, Yue Zhang
- J. High Energ. Phys. 2019, 1 (2019)

- Dark photon coupling: α_D
- Dark matter mass: M_{χ}
- Dark photon mass: $M_{A'}$
- Coupling to SM: \mathcal{E}

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{\chi} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} M^2_{A'} A'_{\mu} A'^{\mu} - \frac{\varepsilon}{2} F'_{\mu\nu} F^{\mu\nu}$$

$$\mathcal{L}_{\chi} = \begin{cases} i\bar{\chi} \not{D} \chi - M_{\chi} \bar{\chi} \chi, & \text{(Dirac fermion DM)} \\ |D_{\mu} \chi|^2 - M_{\chi}^2 |\chi|^2, & \text{(Complex scalar DM)} \end{cases}$$

Light Dark Matter

- Uses a convolutional neural network to identify dark-tridentlike e^+e^- events among many cosmic ray and neutrino backgrounds
- We set word-leading limits for both scalar and fermion dark matter

Phys. Rev. Lett. 132, 241801 (2024)

Drift Time

Dark Neutrinos

- Neutrinos up-scatter to heavy sterile neutrinos (dark neutrinos)
- These dark neutrinos can be long or short lived, produced in the dirt upstream of MicroBooNE, or inside MicroBooNE
- The dark neutrinos then decay to e^+e^- pairs
- This model could explain the MiniBooNE Low Energy Excess (LEE) of electromagnetic events
 - A 4.8 σ unexplained neutrino anomaly just 90 m downstream in the same neutrino beam!

https://arxiv.org/abs/2308.02543

https://arxiv.org/abs/2207.04137

Enrico Bertuzzo, Sudip Jana, Pedro A.N. Machado, **Renata Zukanovich Funchal**

Phys. Rev. Lett. 121, 241801 (2018)

https://microboone.fnal.gov/wp-content/uploads/2024/06/MICROBOONE-NOTE-1124-PUB.pdf

Dark Neutrinos

- Most sensitivity in MicroBooNE comes from coherent scattering
 - Here, the large argon nucleus gives us a boost in expected event rate relative to MiniBooNE
- We expect to be able to exclude almost all of the MiniBooNE-allowed phase space of this model
- Look forward to unblinded results soon!

Fixed ε : 8e-4 , Δ : 0.50

https://microboone.fnal.gov/wp-content/uploads/2024/06/MICROBOONE-NOTE-1124-PUB.pdf

- Neutron to antineutron transition $(n \rightarrow \overline{n})$ is a theoretically motivated BSM process which would violate baryon number by two units
- Important to understand the baryon asymmetry of the universe
- In a nucleus, a neutron can spontaneously convert to an antineutron, which then annihilates with a neutron or proton, producing pions in the final state

- Neutron to antineutron transition $(n \rightarrow \overline{n})$ is a theoretically motivated BSM process which would violate baryon number by two units
- Important to understand the baryon asymmetry of the universe
- In a nucleus, a neutron can spontaneously convert to an antineutron, which then annihilates with a neutron or proton, producing pions in the final state

Argon-40 Nucleus

- Neutron to antineutron transition $(n \rightarrow \overline{n})$ is a theoretically motivated BSM process which would violate baryon number by two units
- Important to understand the baryon asymmetry of the universe
- In a nucleus, a neutron can spontaneously convert to an antineutron, which then annihilates with a neutron or proton, producing pions in the final state

Argon-40 Nucleus

~9x more energy released than a U-235 fission

- Neutron to antineutron transition $(n \rightarrow \overline{n})$ is a theoretically motivated BSM process which would violate baryon number by two units
- Important to understand the baryon asymmetry of the universe
- In a nucleus, a neutron can spontaneously convert to an antineutron, which then annihilates with a neutron or proton, producing pions in the final state

- In MicroBooNE, we use a convolutional neural network to identify these events and reject cosmic ray backgrounds
- Unique isotropic star-like topology

Lee Hagaman on behalf of the MicroBooNE Collaboration 28

- We find that a CORSIKA cosmic ray simulation is insufficient to describe relevant backgrounds, so we set a "demonstrative" limit, assuming no signal and forming a data-driven background estimate
 - $\tau_m \gtrsim 1.2 \times 10^{26}$ yr in ⁴⁰Ar (90% CL)
 - $\tau_{n \to \overline{n}} \gtrsim 2.6 \times 10^5$ s for a free neutron (90% CL)
- This demonstrates a high efficiency selection of this topology, important for DUNE
 - DUNE will set a much more competitive limit, by scaling up this LArTPC technology by a factor of ~500x, deep underground with vastly reduced cosmic rays

More Ongoing BSM Analyses At MicroBooNE

- Millicharged particles
- Heavy QCD axions
- Short baseline neutrino oscillations using BNB+NuMI
- More general photon/ e^+e^- anomaly searches

https://microboone.fnal.gov/wp-content/ uploads/MICROBOONE-NOTE-1132-PUB.pd

Thanks for your attention!

