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We found…

- A new mechanism to produce dark compact objects  

- A new way to form primordial black holes 

- Late time collapse into low mass black holes 

- Late time decay of low mass black holes 

- Dissipative dark sector can be all of dark matter 

- Dark halo size set by features of the dark matter 
model
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ℒ ⊃ χ̄(iγμDμ − mχ)χ −
1
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Dμ = ∂μ − i4πα1/2
D Aμ

 The dark sector model  

Original model in Chang et al 2019
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 The dark sector model  

 Scalar field potential for thermal inflation

V(ϕ) = V0 −
1
2

m2
ϕ |ϕ |2 + T2 |ϕ |2 + . . .



Formation of Dark Compact 
Objects
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Returning to Standard Cosmology

Thermal Inflation 
dilutes dark matter 

and returns universe 
to Standard model 

radiation domination

Halo continues to cool 
and compactly via 

dark bremsstrahlung

Halo collapses to a 
black hole or 

fragments into 
pressure supported 

dark compact objects



Final evolution of dark electron halos   
(zoomed in)

αD = 0.1

Fragments Black Holes  δ0 ∼ 10−5

104 106 108

mX [GeV]

10°4

10°3

10°2

10°1

100

101

102

m
∞ D

[G
eV

]

10°2 m

10°1 m

100 m

101 m

102 m

103 m

104 m

105 m

too
col

d

bl
ac

k
ho

les

1020

1022

1024

1026

1028

1030

1032
F
in

al
m

as
s

[g
]

f
=

0.
17

f
=

0.
05

108 1010 1012 1014 1016

mX [GeV]

10°4

10°2

100

102

104

106

108

m
∞ D

[G
eV

]

1 s

1 yr

1 kyr

1 Myr

1 Gyr
H°1

0

too
col

d

Dar
kC

O
s

108

1010

1012

1014

1016

1018

1020

1022

1024

1026

1028

1030

F
in

al
m

as
s

[g
]

f
=

0.
17

f
=

0.
05



Delayed Primordial Black Holes

Reducing  slows cooling and collapse


Can lead to “late” collapse and evaporation of black holes

αD




αD = 10−7
Delayed Primordial Black Holes??
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• Many of the tools used for star and galaxy formation are relevant to the dark 
sector once we introduce self interactions


• A dissipative dark sector can dominate the universe before BBN and lead to 
the creation of black holes and dark compact objects


• Predictions for the size and evolution of these objects follows 
straightforwardly from one’s choice of dark matter model

 Conclusions



Thank you for listening
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How much of the dark matter is in compact structure?

σ = δ0 ∼ 10−5

Distribution of initial density perturbations δ0

0 10−5−10−5

Largest 
perturbations 

collapse earliest

Phase transition 
cuts off growth 

of small 
perturbations 

before they form 
halos

Answer: The 
fraction of mass 
in perturbations 
that have time to 

form halos 
before EMDE 

ends



How much of the dark matter is in compact structure?

σ = δ0 ∼ 10−5

Distribution of initial density perturbations δ0

0 10−5−10−5

Largest 
perturbations 

collapse earliest

Phase transition 
cuts off growth 

of small 
perturbations 

before they form 
halos

Answer: The 
fraction of mass 
in perturbations 
that have time to 

form halos 
before EMDE 

ends

 All perturbations 

over 1 STDeV grow

 in halos

≈ 17 %  χ



Future work

• Press Schechter estimate of PBH / MACHO spectrum


• More careful treatment of fragmentation process


• Explore multiple matter domination “exit strategies”


• Include long range interaction case


• Explore impact of dark radiation emitted during collapse



Trajectory of an Example Halo

Virialization

Semi-virial

Collapse Pressure Supported

Cooling Fast 
Compared to 

Collapse 

Ball becomes 
opaque 

Fragmentation

 GeV


 GeV





mx = 106

mγD = 10−1

αD = 0.1

δ0 = 10−5



Limits on small black holes

Black holes radiate + evaporate


Smaller black holes emit hotter 
radiation and evaporate faster


g evaporate within 
the lifetime of the universe
mBH ≲ 1014

Source: “Constraints on Primordial Black Holes” Carr et al. (2021)



Limits on “heavy” PBH (and MACHO) abundances

Source: A Brief Review on Primordial Black Holes


