

We know that Dark Matter exists **²**

FROM THE CMB: $\Omega_{\rm DM}h^2=0.12$

HOW IS DM PRODUCED IN THE EARLY UNIVERSE?

-
-
-
-
-
-
-
-
- - - -
-
-
-
-
-
-
-
-
-
-
- -
-
- -
	-
	-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- -
	-
- - -
	-
-
-
-
- -
	- -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

If Dark matter is thermally coupled

If Dark matter is thermally coupled

If Dark matter is thermally coupled

HOW IS DM PRODUCED IN THE EARLY UNIVERSE?

-
-
-
-
-
-
-
-
- - - -
-
-
-
-
-
-
-
-
-
-
- -
-
- -
	-
	-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- -
	-
- - -
	-
-
-
-
- -
	- -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

IF DARK MATTER IS THERMALLY DECOUPLED

If Dark matter is thermally Decoupled

If Dark matter is thermally Decoupled

KEY POINTSE

-
-
-
-
-
-
-
- -

KEY POINTS

1. Interested in evolution of "quantum probabilities"

KEY POINTS

1. Interested in evolution of "quantum probabilities"

2. Assume that everything happens in a vacuum

3. Temperature scale set by the mass of the heaviest interacting particle

KEY POINTS

1. Interested in evolution of "quantum probabilities"

2. Assume that everything happens in a vacuum

3. Temperature scale set by the mass of the heaviest interacting particle

Key points:

1. When and h When and how can we break these assumptions?

2. Assume that everything happens in a vacuum

particle

KEY POINTS

1. When and h When and how can we break these assumptions?

<u>IS. IN THE CREATE SET IN STATE S</u> by the mass of heaviest interaction of the state of the stat
The state of the st space/momentum What does it mean for dark matter **phenomenology?**

2. Assume that everything happens in a

CONSIDER: DARK MATTER MIXES WITH AN OTHER PARTICIE

BSM OR SM STATE

STERILE OR NON-INTERACTING **STATE DARK** MATTER

CONSIDERE DARK MATTER MIXES WITH ANOTHER PARTICIE

IN THE STANDARD MODEL:

FLAVOR EIGENSTATES

 $v_{\mathbf{z}}$ \cup MASS EIGENSTATES

ນ.

STERILE OR NON-INTERACTING **STATE DARK MATTER**

CONSIDERE DARK MATTER MIXES WITH ANOTHER PARTICIE

IN THE STANDARD MODEL:

FLAVOR EIGENSTATES

 $v_{\mathbf{z}}$ $\left\lfloor \nu_3 \right\rfloor$ MASS EIGENSTATES

 $\boldsymbol{\mathcal{D}_\text{l}}$

- PHOTON- AXIONS D NEUTRINO - STERILE NEUTRINO
- PHOTON DARK PHOTON
- BEYOND THE STANDARD MODEL:

STERILE OP NON-INTERACTING STATE: DARK **MATTER**

What if Dark Matter mixes with another particle?

IN THE STANDARD MODEL: ່ນ, We $\mathcal{D}_{\mathbf{2}}$ MASS EIGENSTATES PRODUCED IN PICK UP DIFF. FLAVOR EIGENSTATES PHASES

What if Dark Matter mixes with another particle?

IN THE STANDARD MODEL: ່ນ, We $\mathcal{D}_\mathbf{2}$ $\boldsymbol{\mathcal{Y}_2}$ $\sqrt[\infty]{\tau}$ MASS EIGENSTATES PRODUCED IN PICK UP DIFF. FLAVOR EIGENSTATES PHASES

NEUTRINOS DSCILLATEI **CAN**

Dark matter may also be similarly produced through oscillations

Dark matter may also be similarly produced through oscillations

Dark matter may also be similarly produced through oscillations

START OFF WITH $\boldsymbol{\mathcal{W}}$ IN THE EARLY UNIVERSE, Generate a density *χ*

The probability of conversion is quantified by the amount of mixing

 $\mathcal{L}_{\psi-\chi}$ $\supset m_{\psi\chi} (\bar{\psi}\chi + h.c.)$

The probability of conversion is quantified by the amount of mixing

 χ) flavor $=$ ($\cos \theta_0$ −sin θ_0 $\sin \theta_0$ $\cos \theta_0$) *ψ* χ) $_{\rm mass}$,

 $\mathscr{L}_{\psi-\chi}$ \sup $m_{\psi\chi}$ $(\bar{\psi}\chi+h.c.)$

Parameterize in terms of an angle

P

The probability of conversion is quantified by the amount of mixing

 χ) flavor $=$ ($\cos \theta_0$ −sin θ_0 $\sin \theta_0$ $\cos \theta_0$) *ψ* χ) $_{\rm mass}$,

2*m*² *ψχ m*2 *^ψ* − *m*² *χ*

 $\tan 2\theta_0 =$

 $\mathscr{L}_{\psi-\chi} \supset m_{\psi\chi} (\bar{\psi}\chi + h.c.)$

Parameterize in terms of an angle

VID

IN A VACUUM, ψ converts into χ with a PROBABILITY GIVENBY

 $P_{\psi \to \chi} = \sin^2 2\theta_0 (1 - \cos \omega_{\text{osc}} t)$

IN A VACUUM, W CONVERTS INTO X WITH A PROBABILING WENBY

$P_{\psi \to \chi} = \sin^2 2\theta_0 (1 - \cos \omega_{\text{osc}} t)$

Oscillation frequency set by $\Delta m^2 = m_W^2 - m_\gamma^2$

The universe is not a vacuum…

interacts with the *ψ* particles In the plasma

The universe is not a vacuum…

 \mathscr{C}

interacts with the *ψ* particles In the plasma

"Forward scattering"

(*ψ* maintains its momentum)

The universe is not a vacuum…

 \mathscr{C}

interacts with the *ψ* particles In the plasma

 \mathbb{Q}

 $\bigotimes^{\!}$

"Forward scattering"

(*ψ* maintains its momentum)

"Collisions"

(Such as annihilations)

Forward scattering modifies the dispersion of *ψ*…

"Forward scattering"

(*ψ* maintains its momentum)

…and therefore its effective mass in the plasma.

$$
m_{\psi,\text{medium}}^2 = m_{\psi}^2 + \Delta m_T^2
$$

Forward scattering modifies the dispersion of *ψ*…

"Forward scattering"

(*ψ* maintains its momentum)

…and therefore its effective mass in the plasma.

In-medium Mixing angle Modified!

$$
\tan 2\theta_m = \frac{2m_{\psi\chi}^2}{m_{\psi}^2 + \Delta m_{\overline{T}}^2 - m_{\chi}^2}
$$

$$
m_{\psi,\text{medium}}^2 = m_{\psi}^2 + \Delta m_T^2
$$

Forward scattering modifies the dispersion of *ψ*…

"Forward scattering"

(*ψ* maintains its momentum)

…and therefore its effective mass in the plasma.

> $\tan 2\theta_m =$ $m_{\rm V}^2 + \Delta m_T^2 - m_{\rm \chi}^2$ Function of temperature! (background fermion density)

In-medium Mixing angle Modified!

2*m*² *ψχ*

$$
m_{\psi,\text{medium}}^2 = m_{\psi}^2 + \Delta m_T^2
$$

…potentially enhancing the mixing angle

 $\tan 2\theta_m =$ 2*m*² *ψχ* $m_{\rm V}^2 + \Delta m_T^2 - m_{\rm \chi}^2$

RESONANT ENHANCEMENT AT T_{osc} **WHEN** $\Delta m_T^2 = m_\psi^2 - m_\chi^2$

…potentially enhancing the mixing angle

tan 2*θ^m* = 2*m*² *ψχ* $m_{\rm V}^2 + \Delta m_T^2 - m_{\rm \chi}^2$

10

RESONANT ENHANCEMENT AT T_{osc} WHEN $\Delta m_T^2 = m_\psi^2 - m_\chi^2$

…potentially enhancing the mixing angle

dependent mixing angle! enhancement at , which is a strong strong strong to the strong strong strong strong strong strong strong strong
The strong s **In-medium effects result in a temperature**

Ames

when the contract of the contr $\Delta m_T^2 = m_\psi^2 - m_\chi^2$

 $2m_{\rm max}^2$

Production (*ψ* →

Collisions spoil the coherence between *ψ* and *χ*

.. and Damp the coherent oscillations

-
-
-
-
-
-
-

Collisions spoil the coherence between *ψ* and *χ*

.. and Damp the coherent oscillations

- Track quantum amplitudes, Oscillations are coherent processes!

ROMPS are interesting dark matter candidates phenomenologically different from freeze-in and FREZE-OUT

freeze-In/Freeze-out ROMPs

- Incorporate the effect of finite temperature and density of the background

ROMPS are interesting dark matter candidates phenomenologically different from freeze-in and FREEZEOUT

Assume that everything happens in a vacuum

ROMPS are interesting dark matter candidates phenomenologically different from freeze-in and FREEZEOUT

ROMPS are interesting dark matter candidates phenomenologically different from freeze-in and FREEZEOUT

freeze-In/Freeze-out ROMPs

freeze-In/Freeze-out ROMPs

ROMPS are interesting dark matter candidates phenomenologically different from freeze-in and **FREEZEOUT**

But how does one calculate the Dark matter relic abundance accounting for - coherent and incoherent effects - INTERACTIONS WITH THE BACKGROUND - Resonances in the parameter space

 $=$ $V \times P - DP_T +$.
j $\dot{P}_0 \hat{z}$

Solve a Quantum Kinetic Equation for ROMP Polarization

 $P_z = f_{\psi}(p) - f_{\chi}(p)$

 $=$ $V \times P - DP_T +$.
j $\dot{P}_0 \hat{z}$

Solve a Quantum Kinetic Equation for ROMP Polarization

ROMP polarization with

 $=$ $V \times P - DP_T +$.
j $\dot{P}_0 \hat{z}$

Solve a Quantum Kinetic Equation for ROMP Polarization

ROMP polarization with $P_z = f_{\psi}(p) - f_{\chi}(p)$

 $P_0 = f_{\psi}(p) + f_{\chi}(p)$

= **V** × **P** − *D* **PT** + .
j $\dot{P}_0 \hat{z}$ $P_0 = f_{\psi}(p) + f_{\chi}(p)$ ROMP polarization with $P_z = f_{\psi}(p) - f_{\chi}(p)$

Solve a Quantum Kinetic Equation for ROMP Polarization

 $$

= **V** × **P** − *D* **PT** + .
j $\dot{P}_0 \hat{z}$ $P_0 = f_{\psi}(p) + f_{\chi}(p)$ $$ Damping *D* ∼ Γ*ψ*→everything ROMP polarization with $P_z = f_{\psi}(p) - f_{\chi}(p)$

Solve a Quantum Kinetic Equation for ROMP Polarization

 $=$ $V \times P - DP_T +$.
j $\dot{P}_0 \hat{z}$

Solve a Quantum Kinetic Equation for ROMP Polarization

Solve a Quantum Kinetic Equation for ROMP Polarization

Accounts for coherent effects

(quantum amplitudes)

$=$ $V \times P - DP_T +$.
j $\dot{P}_0 \hat{z}$

Solve a Quantum Kinetic Equation for ROMP Polarization

Accounts for coherent effects

(quantum amplitudes)

Accounts for incoherent effects

(quantum probability)

 $=$ $V \times P - DP_T +$.
j $\dot{P}_0 \hat{z}$

FINALLY TIME TO TALK ABOUT COUPLINGS!

 $2m_{\psi\chi}^2$

$$
n_T^2 \sim \frac{T^2}{\Lambda^2} \frac{1}{T} (n_F - n_{\bar{F}})
$$

May be small!

Vector Interactions: Phenomenology

DIM 6: $\mathscr{L}_V^{(6)}$ $V^{(6)} = (\bar{\psi} \gamma^{\mu} F) g_{\mu\nu} (\bar{F} \gamma^{\nu} \psi)$: $Δ*n*$ $\tan 2\theta_m =$

DIM 8: $\mathscr{L}_V^{(6)}$ *V* = 1 $\frac{1}{\Lambda^4} (\bar{\psi} \gamma^{\mu} F)(g_{\mu\nu} q^2 + q_{\mu} q_{\nu})(\bar{F} \gamma^{\nu} \psi) : \qquad \Delta m_T^2 \sim -\frac{T^4}{\Lambda^4}$

 $\tan 2\theta_m =$ $2m_{\psi\chi}^2$ $m_{\rm V}^2 + \Delta m_{\rm T}^2 - m_{\rm \chi}^2$

 Λ^4 1 *T* $(n_F + n_{\bar{F}})$

DIM 8: $\mathscr{L}_V^{(6)}$ *V* = 1 $\frac{1}{\Lambda^4} (\bar{\psi} \gamma^{\mu} F)(g_{\mu\nu} q^2 + q_{\mu} q_{\nu})(\bar{F} \gamma^{\nu} \psi) : \qquad \Delta m_T^2 \sim -\frac{T^4}{\Lambda^4}$

 $2m_{\psi\chi}^2$

If
$$
m_{\chi}^2 > m_{\psi}^2
$$
: No Resonance!

 $\tan 2\theta_m =$

Scattering induced incoherent production!

 Λ^4 1 *T* $(n_F + n_{\bar{F}})$

DIM 8: $\mathscr{L}_V^{(6)}$ *V* = 1 $\frac{1}{\Lambda^4} (\bar{\psi} \gamma^{\mu} F)(g_{\mu\nu} q^2 + q_{\mu} q_{\nu})(\bar{F} \gamma^{\nu} \psi) : \qquad \Delta m_T^2 \sim -\frac{T^4}{\Lambda^4}$

 $2m_{\psi\chi}^2$

If
$$
m_{\chi}^2 > m_{\psi}^2
$$
: No Resonance!

 $\tan 2\theta_m =$

Scattering induced incoherent production!

 may decay: account for *χ* lifetime of *χ*

 Λ^4 1 *T* $(n_F + n_{\bar{F}})$

DIM 8: $\mathscr{L}_V^{(6)}$ *V* = 1 $\frac{1}{\Lambda^4} (\bar{\psi} \gamma^{\mu} F)(g_{\mu\nu} q^2 + q_{\mu} q_{\nu})(\bar{F} \gamma^{\nu} \psi) : \qquad \Delta m_T^2 \sim -\frac{T^4}{\Lambda^4}$

If
$$
m_{\chi}^2 > m_{\psi}^2
$$
: No Resonance!

Scattering induced incoherent production!

 may decay: account for *χ* lifetime of *χ*

 $\tan 2\theta_m =$ $2m_{\psi\chi}^2$ $m_{\rm V}^2 + \Delta m_{\rm T}^2 - m_{\rm \chi}^2$

 Λ^4 1 *T* $(n_F + n_{\bar{F}})$

DIM 8: $\mathscr{L}_V^{(6)}$ *V* = 1 $\frac{1}{\Lambda^4} (\bar{\psi} \gamma^{\mu} F)(g_{\mu\nu} q^2 + q_{\mu} q_{\nu})(\bar{F} \gamma^{\nu} \psi) : \qquad \Delta m_T^2 \sim -\frac{T^4}{\Lambda^4}$

 $2m_\psi^2$ *ψχ*

 $m_{\psi}^2+\Delta m_{T}^2$

If
$$
m_{\chi}^2 > m_{\psi}^2
$$
: No Resonance!

Scattering induced incoherent production!

 may decay: account for *χ* lifetime of *χ*

 Λ^4 1 *T* $(n_F + n_{\bar{F}})$

 $\tan 2\theta_m =$

DIM 8: $\mathscr{L}_V^{(6)}$ *V* = 1 $\frac{1}{\Lambda^4} (\bar{\psi} \gamma^{\mu} F)(g_{\mu\nu} q^2 + q_{\mu} q_{\nu})(\bar{F} \gamma^{\nu} \psi) : \qquad \Delta m_T^2 \sim -\frac{T^4}{\Lambda^4}$

If $m_\chi^2 < m_\psi^2$: Resonance

 $\tan 2\theta_m =$ $2m_{\psi\chi}^2$ $m_{\rm V}^2 + \Delta m_{\rm T}^2 - m_{\rm \chi}^2$

 Λ^4 1 *T* $(n_F + n_{\bar{F}})$

DIM 8: *V* = 1 $\frac{1}{\Lambda^4} (\bar{\psi} \gamma^{\mu} F)(g_{\mu\nu} q^2 + q_{\mu} q_{\nu})(\bar{F} \gamma^{\nu} \psi)$:

If $m_\chi^2 < m_\psi^2$: Resonance

 $\tan 2\theta_m =$ $2m_{\psi\chi}^2$ $m_{\rm V}^2 + \Delta m_{\rm T}^2 - m_{\rm \chi}^2$

$$
\Delta m_{\overline{T}}^2 \sim -\frac{T^4}{\Lambda^4} \frac{1}{T} (n_F + n_{\overline{F}})
$$

DIM 8: *V* = 1 $\frac{1}{\Lambda^4} (\bar{\psi} \gamma^{\mu} F)(g_{\mu\nu} q^2 + q_{\mu} q_{\nu})(\bar{F} \gamma^{\nu} \psi)$:

$$
\Delta m_{\overline{T}}^2 \sim -\frac{T^4}{\Lambda^4} \frac{1}{T} (n_F + n_{\overline{F}})
$$

If
$$
m_{\chi}^2 < m_{\psi}^2
$$
: Resonance

Both coherent (oscillations) and incoherent (scattering induced) production

 $\tan 2\theta_m =$ $2m_{\psi\chi}^2$ $m_{\psi}^2+\Delta m_{T}^2$

DIM 8: $\mathscr{L}_V^{(6)}$ *V* = 1 $\frac{1}{\Lambda^4} (\bar{\psi} \gamma^{\mu} F)(g_{\mu\nu} q^2 + q_{\mu} q_{\nu})(\bar{F} \gamma^{\nu} \psi)$:

$$
\Delta m_{\overline{T}}^2 \sim -\frac{T^4}{\Lambda^4} \frac{1}{T} (n_F + n_{\overline{F}})
$$

If
$$
m_{\chi}^2 < m_{\psi}^2
$$
: Resonance

Both coherent (oscillations) and incoherent (scattering induced) production

 may decay: account for *ψ*freeze-out and decay

 $\tan 2\theta_m =$ $2m_\psi^2$ *ψχ* $m_{\psi}^2+\Delta m_{T}^2$

VECTOR INTERACTIONS:

DIM 8: $\mathscr{L}_V^{(6)}$ *V* = 1 $\frac{1}{\Lambda^4} (\bar{\psi} \gamma^{\mu} F)(g_{\mu\nu} q^2 + q_{\mu} q_{\nu})(\bar{F} \gamma^{\nu} \psi)$:

 $Δ*n*$

$$
\tan 2\theta_m = \frac{2m_{\psi\chi}^2}{m_{\psi}^2 + \Delta m_{\overline{T}}^2}
$$

If
$$
m_{\chi}^2 < m_{\psi}^2
$$
: Resonance

$$
n_{F}^{2} \sim -\frac{T^{4}}{\Lambda^{4}} \frac{1}{T} (n_{F} + n_{F})
$$
\n
$$
10^{-5}
$$
\n
$$
10^{-6}
$$
\n
$$
10^{-7}
$$
\n
$$
10^{-8}
$$
\n
$$
10^{-7}
$$
\n
$$
10^{-8}
$$
\n
$$
10^{-9}
$$
\n
$$
10^{-10}
$$
\n
$$
10^{-11}
$$
\n
$$
10^{-12}
$$
\n
$$
10^{-12}
$$
\n
$$
10^{-12}
$$
\n
$$
10^{-2}
$$

Both coherent (oscillations) and incoherent (scattering induced) production

 may decay: account for *ψ* freeze-out and decay

TAKEAWAYS **26**

TAKEAWAYS 1. Oscillations can be an efficient mechanism for DARK MATTER PRODUCTION

-
-
-
-
-
-

TAKEAWAYS 1. Oscillations can be an efficient mechanism for DARK MATTER PRODUCTION 2. Romps are phenomenologically different from traditional dark matter candidates!

TAKEAWAYS 1. Oscillations can be an efficient mechanism for DARK MATTER PRODUCTION 2. Romps are phenomenologically different from traditional dark matter candidates!

- Production sensitive to coherent effects!
- New temperature scale for production!
- Impact on DM momentum distribution!

TAKEAWAYS 1. Oscillations can be an efficient mechanism for DARK MATTER PRODUCTION 2. Romps are phenomenologically different from traditional dark matter candidates!

3. THE ROMP FRAMEWORK CAN BE EASILY GENERALIZ to well-established dark matter models

- Production sensitive to coherent effects!

- New temperature scale for production!

- Impact on DM momentum distribution!

OUTLOOK 27

OUTLOOK 1. establish the phenomenology of other effective operators such as scalar four-fermi operators 2. Work out constraints: A. STRUCTURE FORMATION B. Collider searches C. Indirect searches for decays

d**P** d*t P*⁰ In a vacuum: **z**

t/*t* osc

Animation Credit: D. Dunsky

d**P** d*t P*⁰ In a vacuum: **z**

t/*t* osc

Animation Credit: D. Dunsky

d**P** d*t P*⁰ In a vacuum: **z**

Animation Credit: D. Dunsky

ψ oscillates into *χ* with a probability given by:

In a medium, without collisions: ^d**^P** d*t* = **V**med × **P** − *D* **PT** +

Mixing angle is a function of temperature, and may cross a resonance! If δt _{res} > t _{osc} adiabatic conversion!

 \bigcap *ψ*, 0 /*f f χ* Production (Production

Animation Credit: D. Dunsky

t/*t* osc

In a medium, without collisions: ^d**^P** d*t* = **V**med × **P** − *D* **PT** +

Mixing angle is a function of temperature, and may cross a resonance! If δt _{res} > t _{osc} adiabatic conversion!

 \bigcap *ψ*, 0 /*f f χ* Production (Production

Animation Credit: D. Dunsky

Adding collisions: ^d**^P**

d*t*

Animation Credit: D. Dunsky

$=$ $V_{\text{vac}} \times P - DP_{\text{T}} +$.
j $\dot{P}_0 \hat{z}$

Collisions cause the two states to "decohere" and become equally populated

Adding collisions: ^d**^P**

d*t*

Animation Credit: D. Dunsky

$=$ $V_{\text{vac}} \times P - DP_{\text{T}} +$.
j $\dot{P}_0 \hat{z}$

Collisions cause the two states to "decohere" and become equally populated

