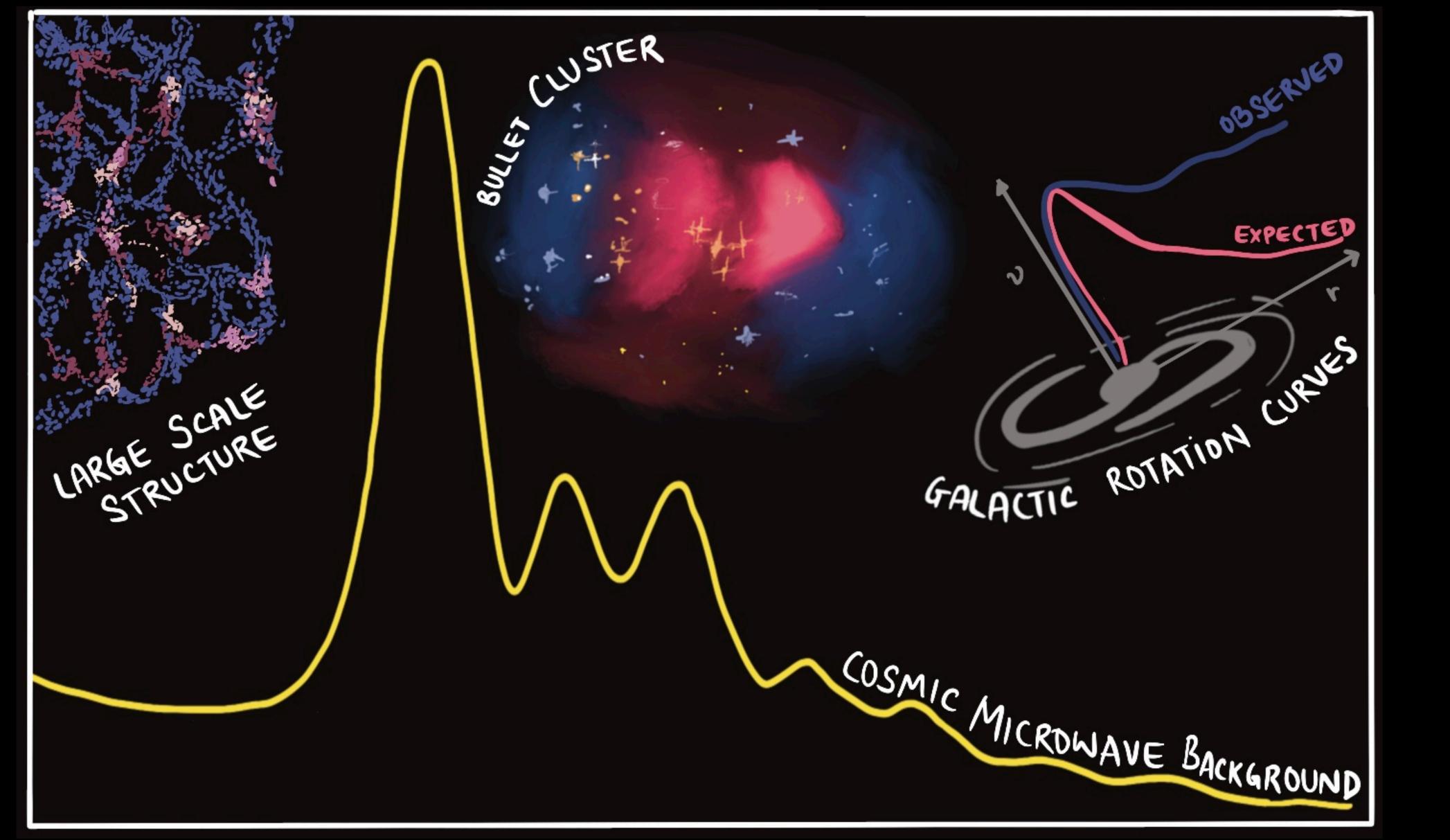
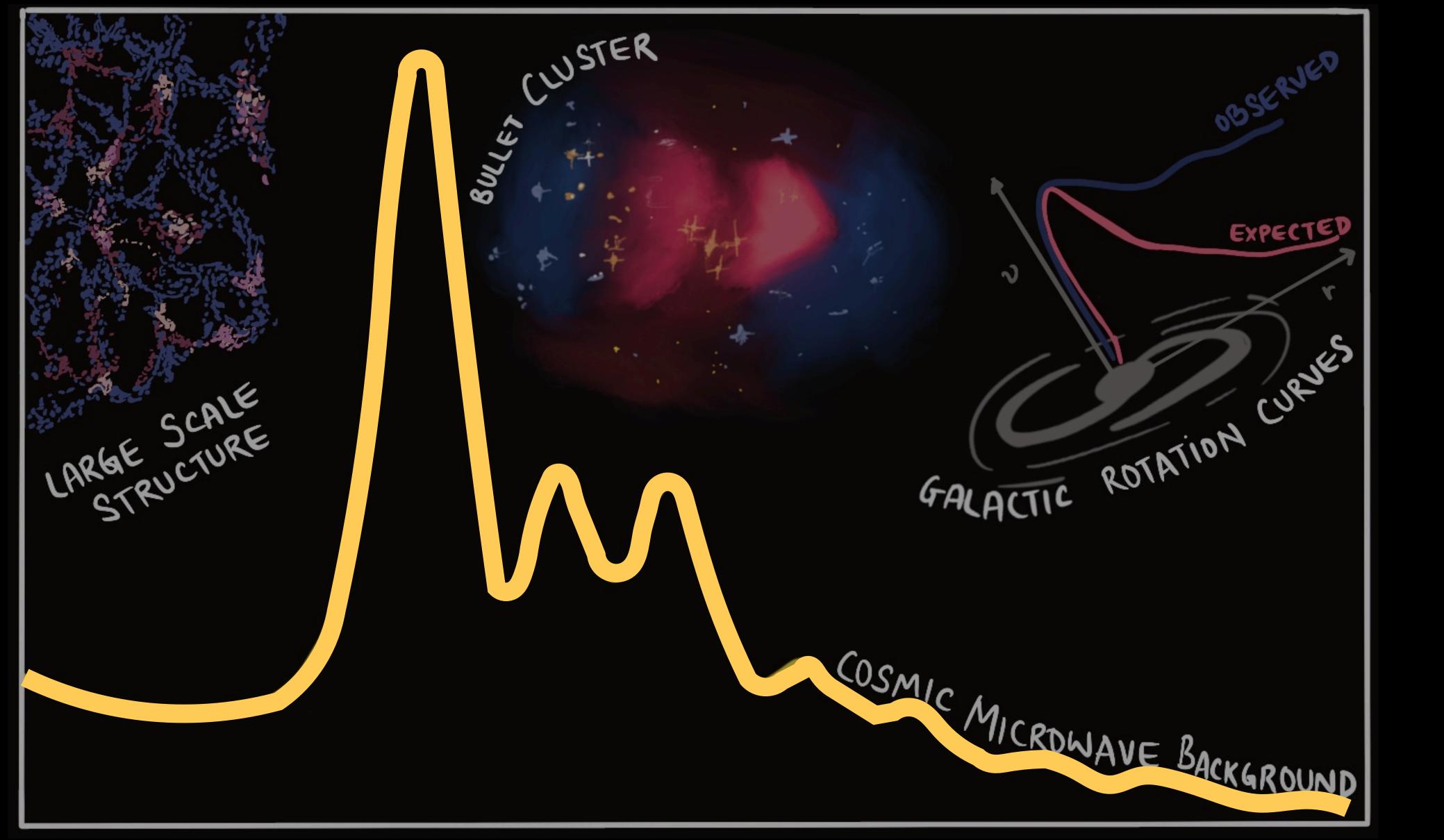


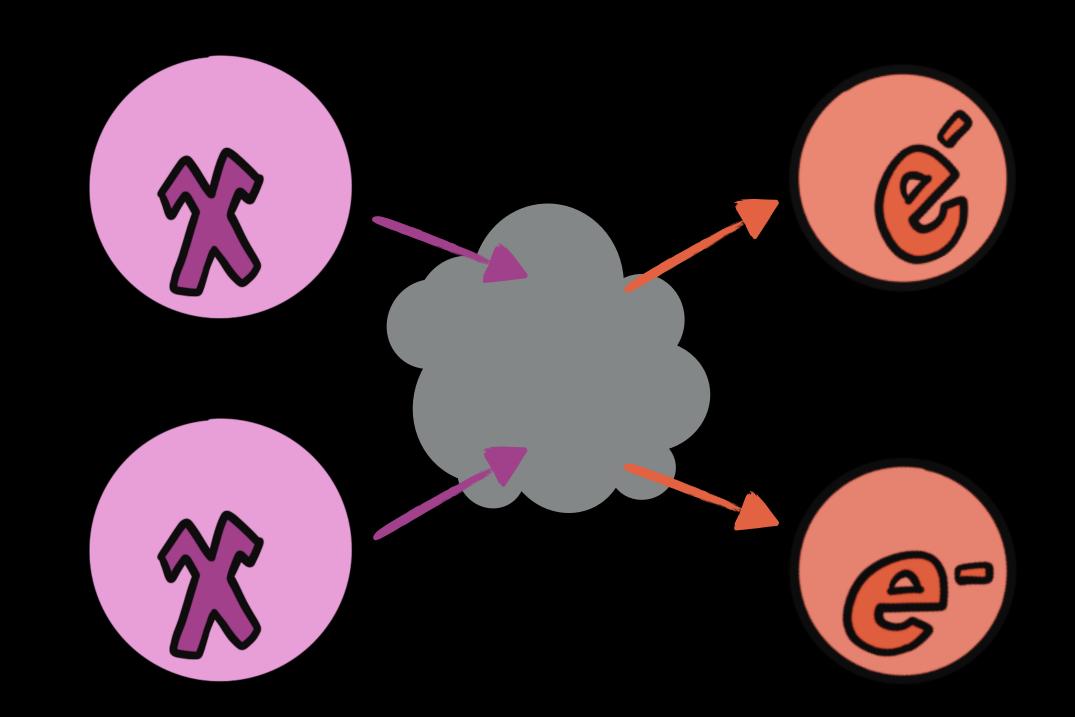
WE KNOW THAT DARK MATTER EXISTS



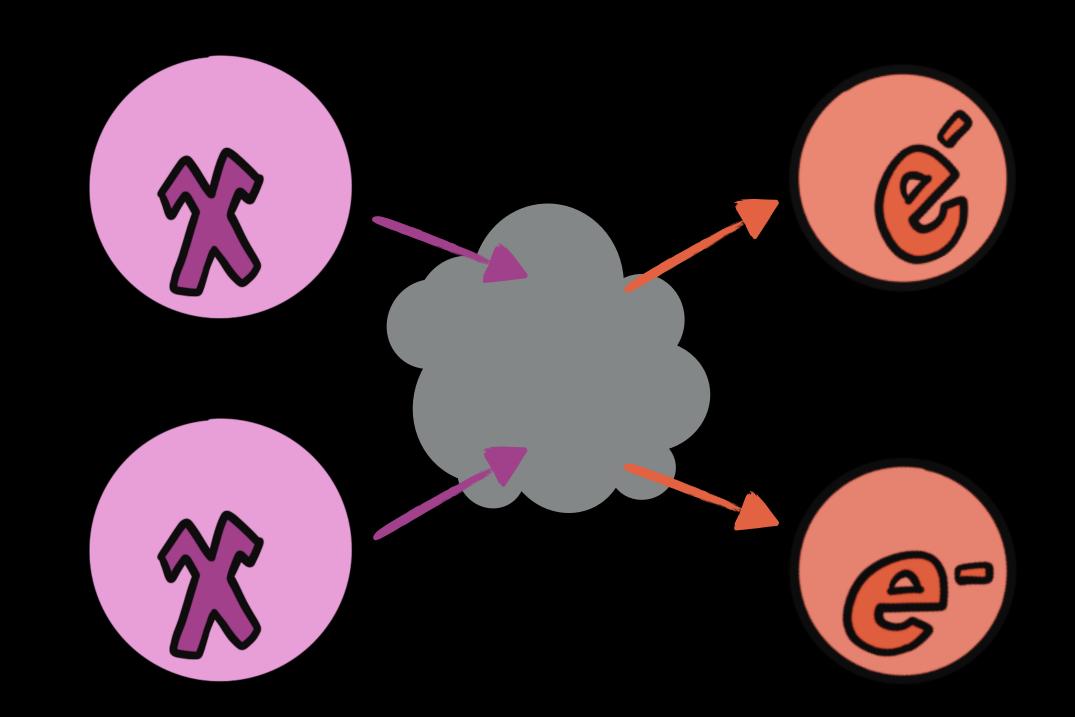


FROM THE CMB: $\Omega_{\rm DM}h^2 = 0.12$

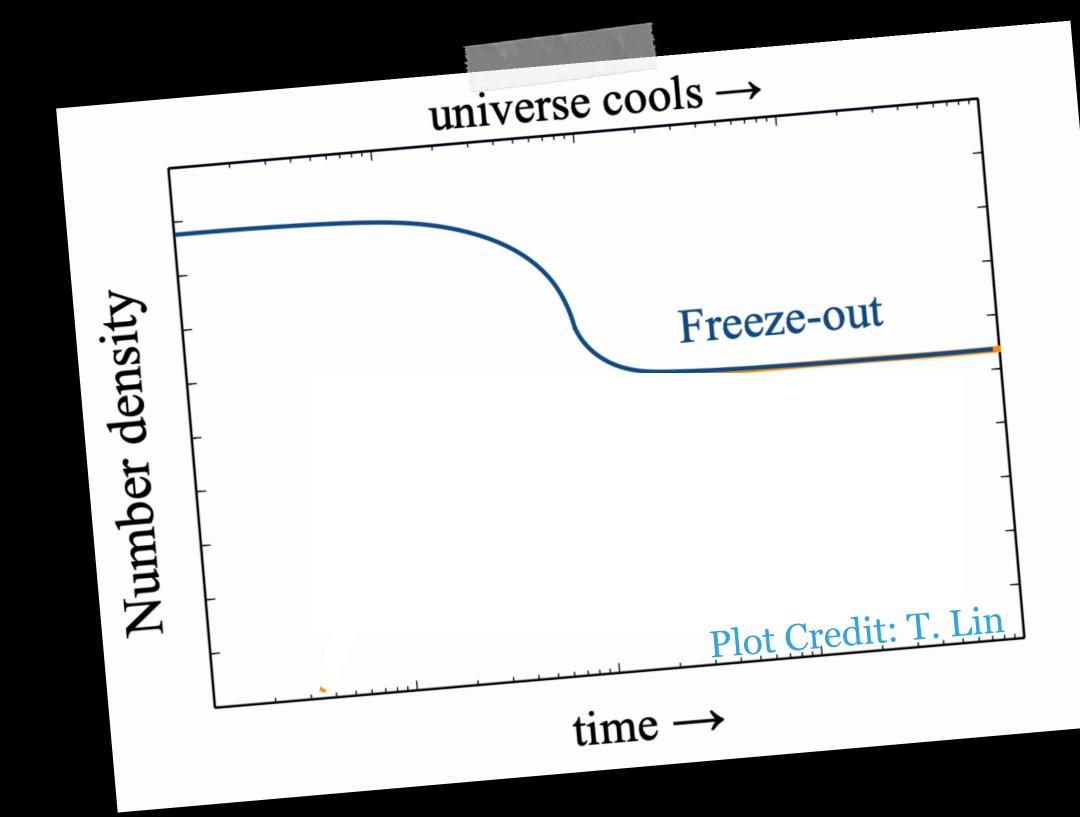
IF DARK MATTER STHERMALLY COUPLED



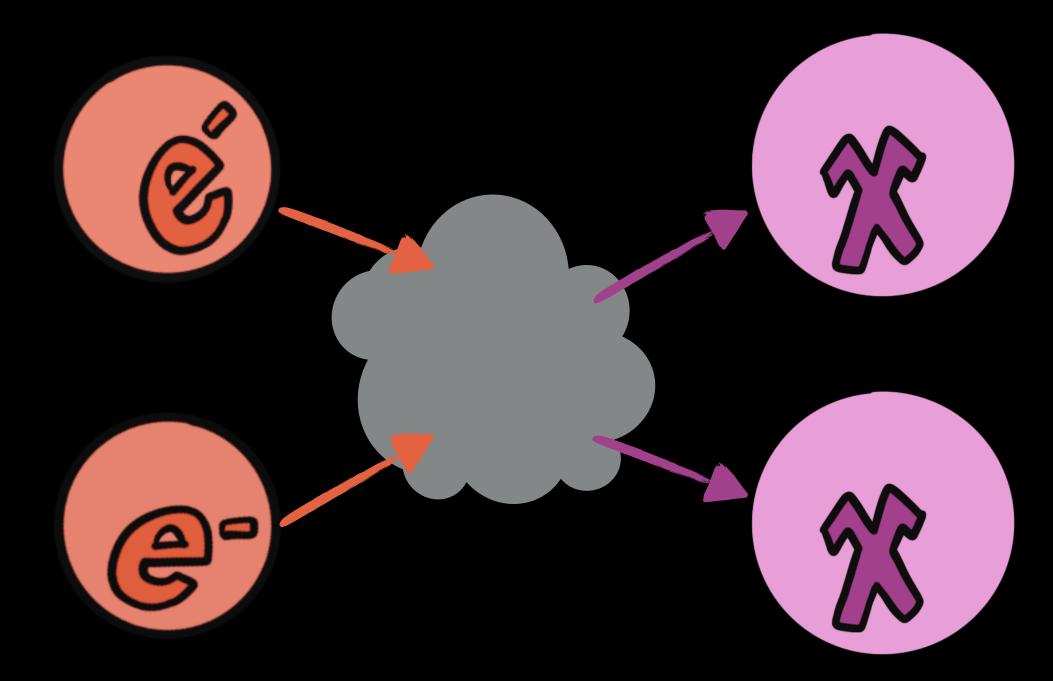
F DARK MATTER S THERMALLY COUPLED



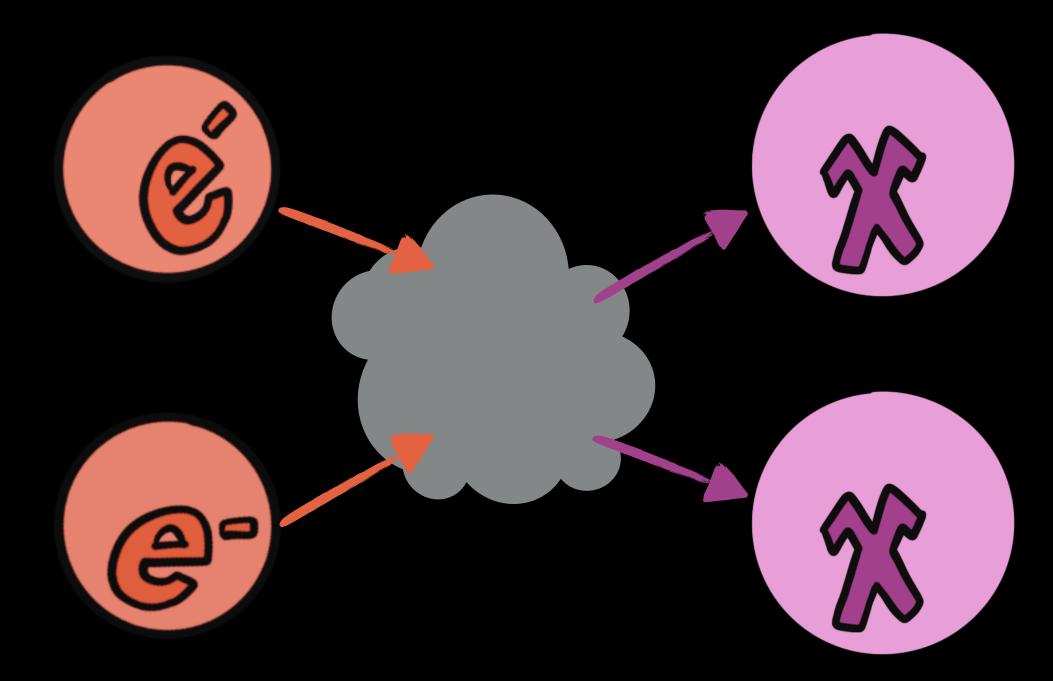
IF DARK MATTER IS THERMALLY COUPLED



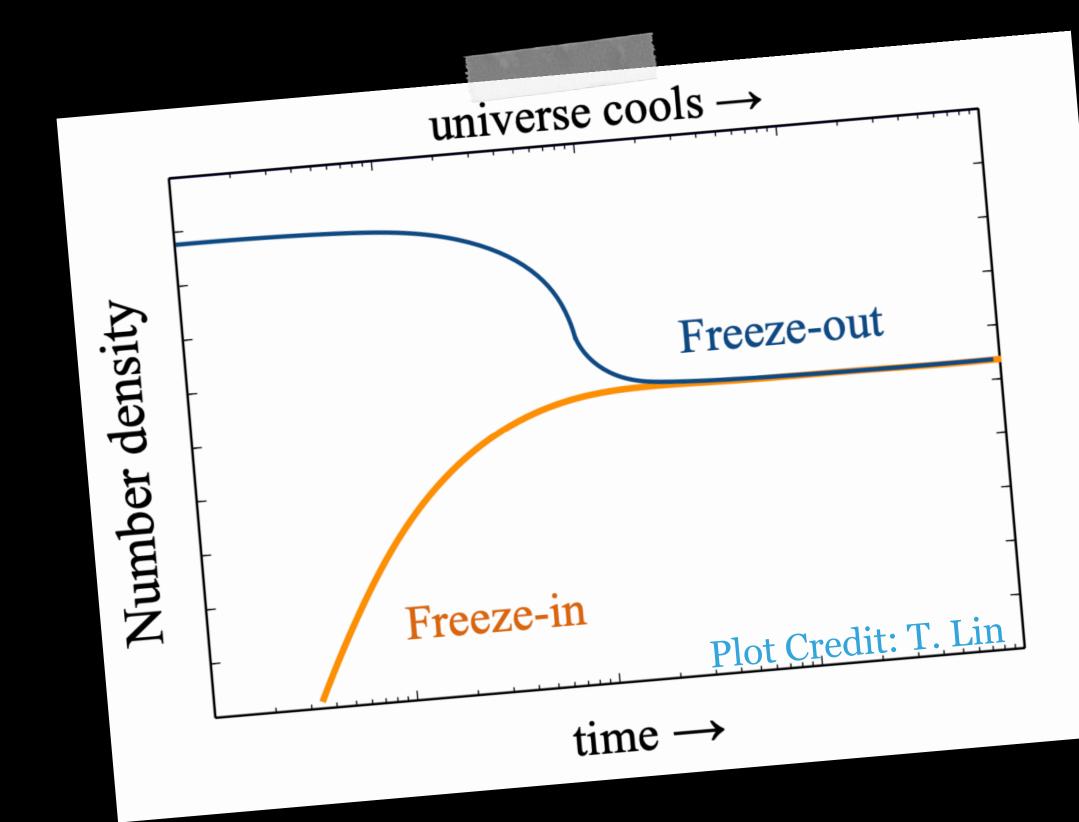
F DARK MATTER STHERMALLY DECOUPLED

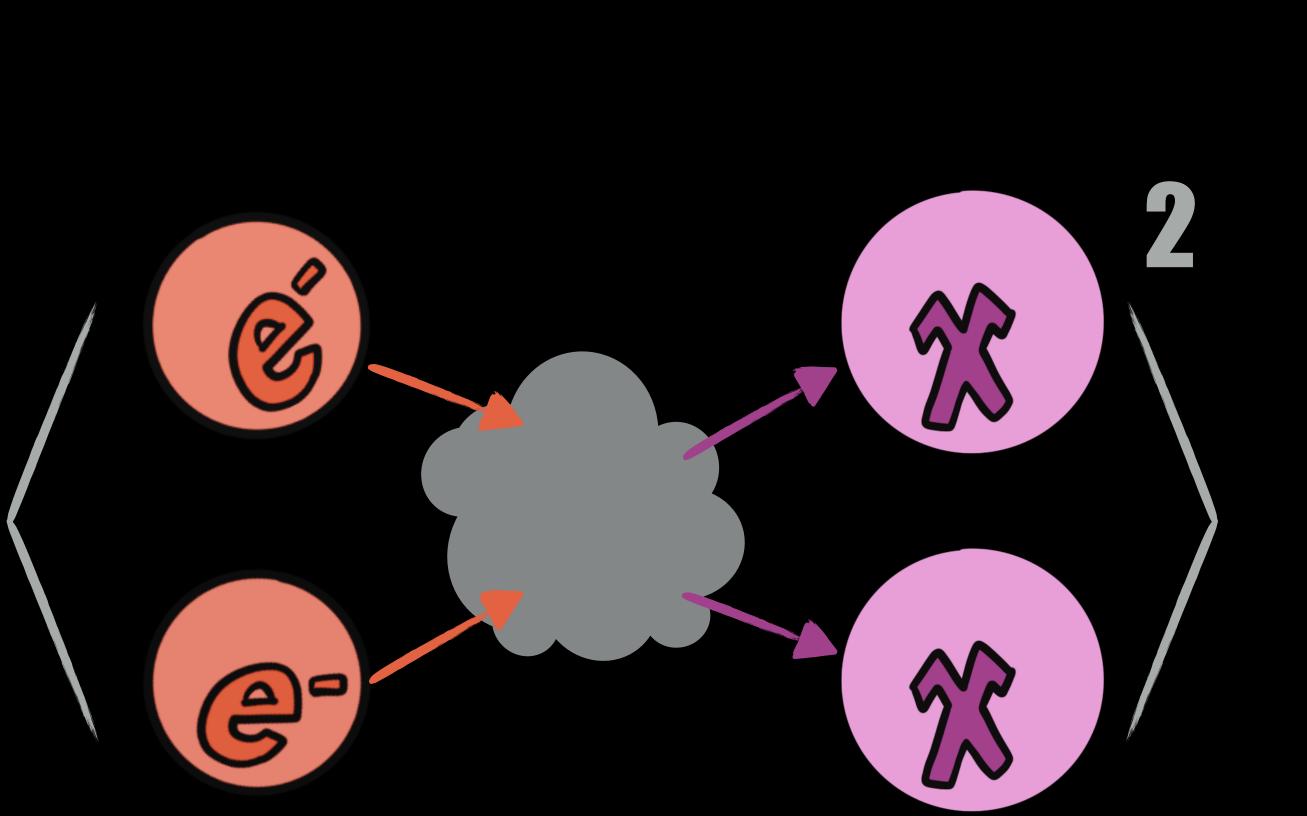


F DARK MATTER STHERMALY DECOUPLED

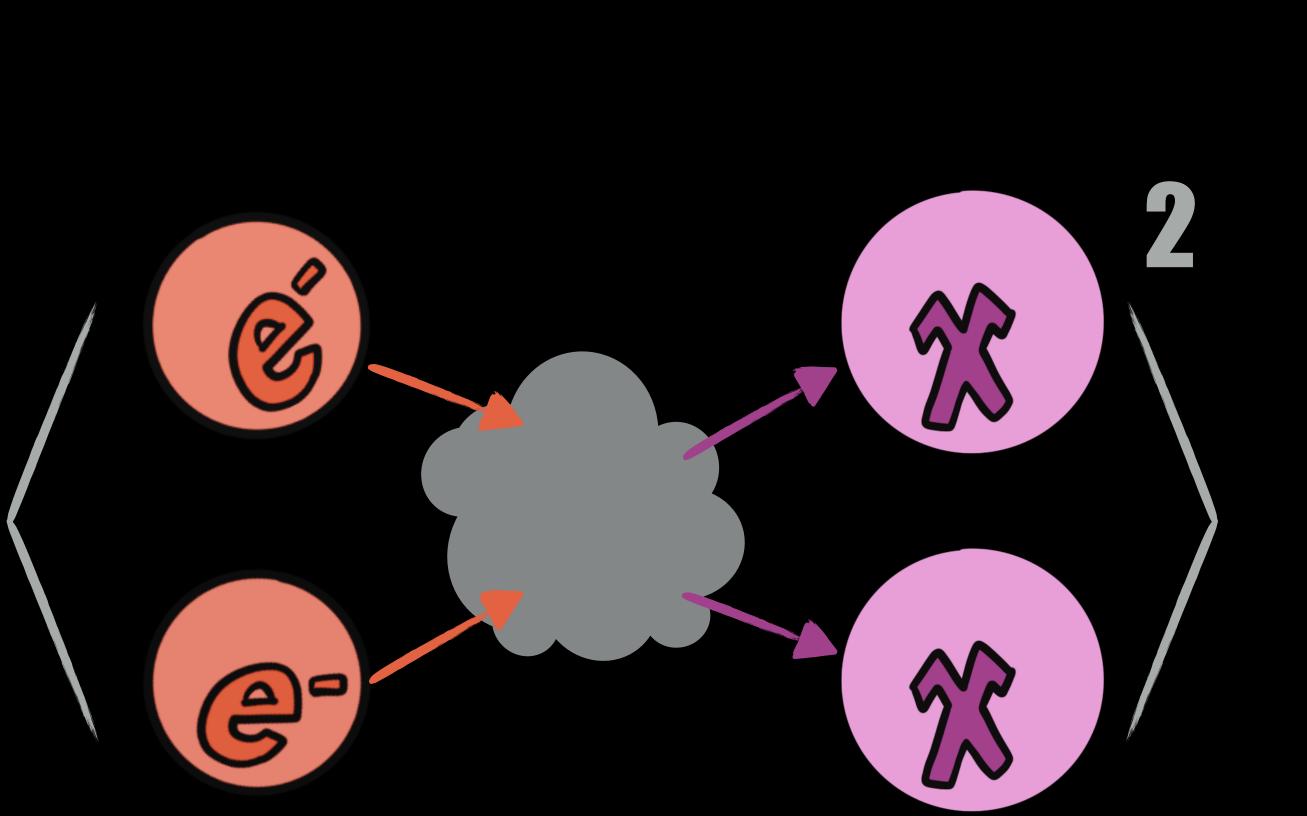


F DARK MATTER STHERMALLY DECOUPLED



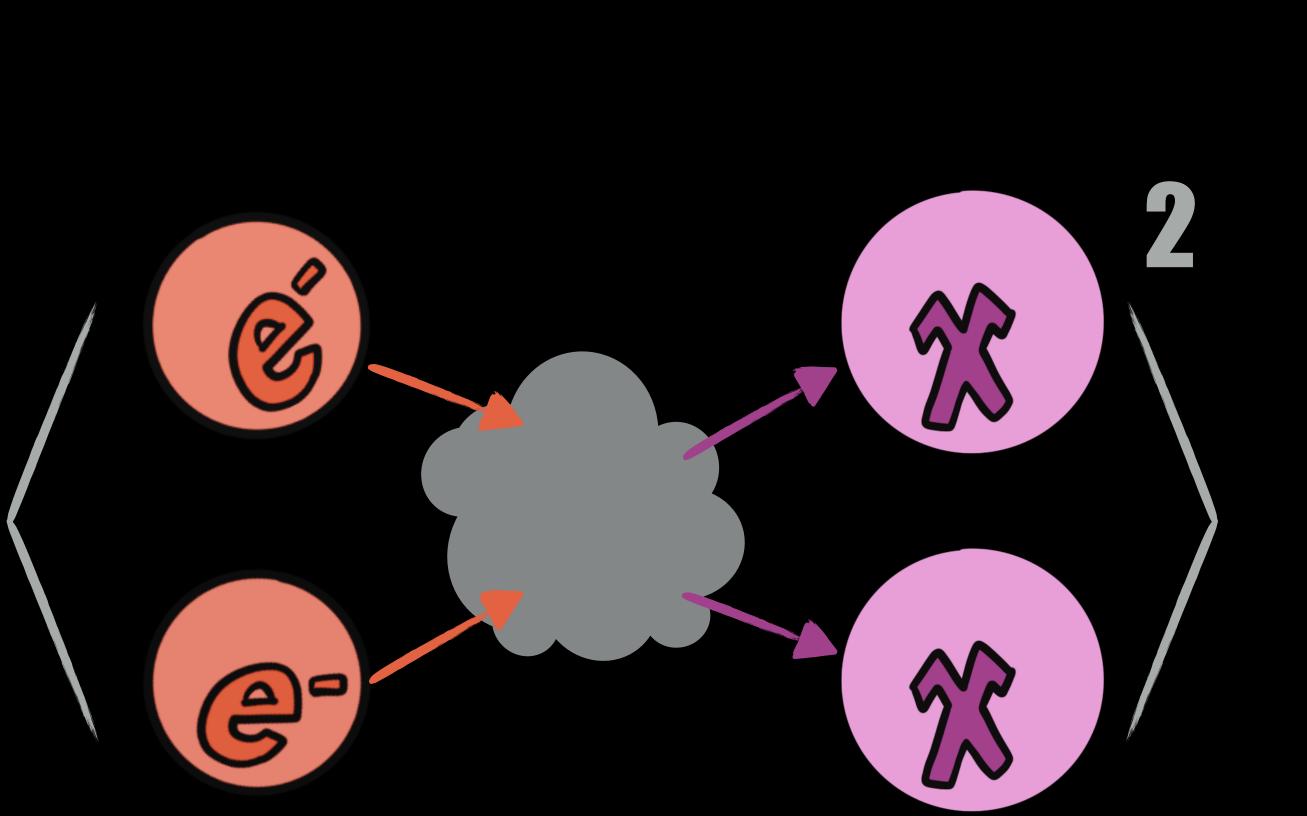


1. Interested in evolution of "quantum probabilities"



1. Interested in evolution of "quantum probabilities"

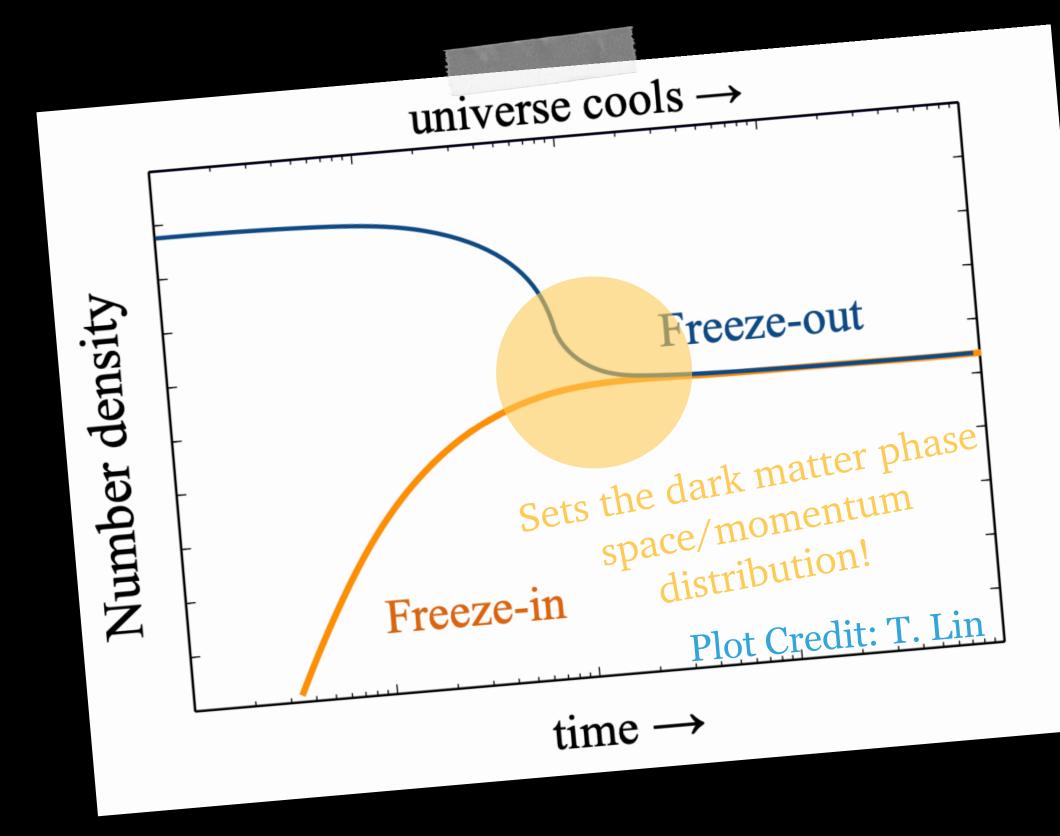
2. Assume that everything happens in a vacuum



1. Interested in evolution of "quantum probabilities"

2. Assume that everything happens in a vacuum

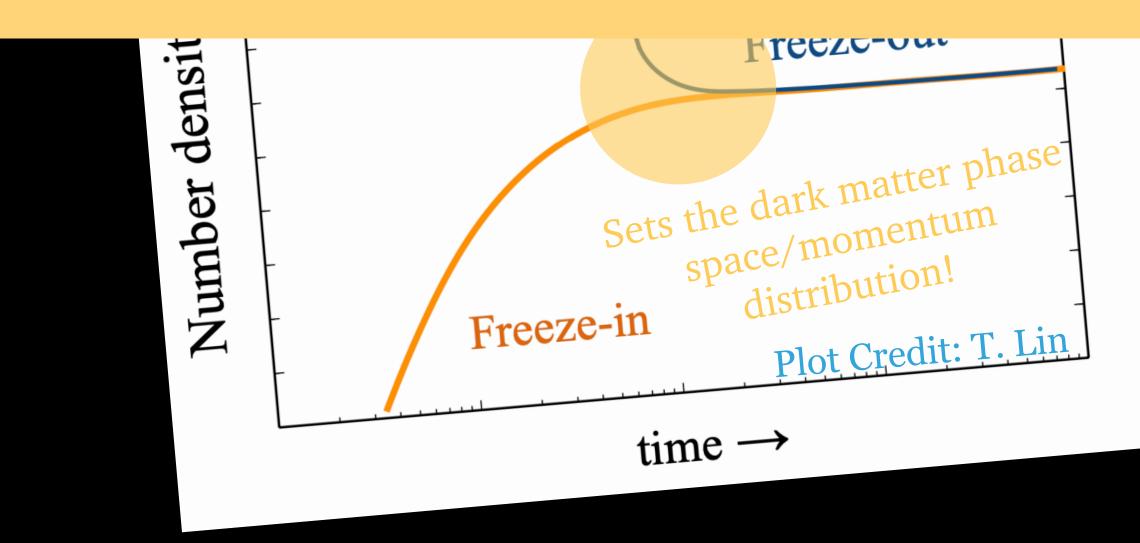
3. Temperature scale set by the mass of the heaviest interacting particle



When and how can we break these assumptions?

2. Assume that everything happens in a vacuum

3. Temperature scale set by the mass of the heaviest interacting particle



When and how can we break these assumptions?

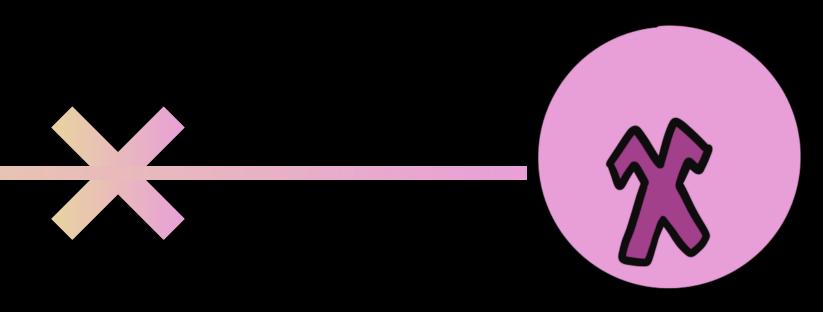
2. Assume that everything happens in a

What does it mean for dark matter phenomenology?

parucie

CONSIDERE DARK MATTER MIXES WITH ANOTHER PARTCLE

BSM OR SM STATE



STERILE OR NON-INTERACTING STATE: DARK MATTER

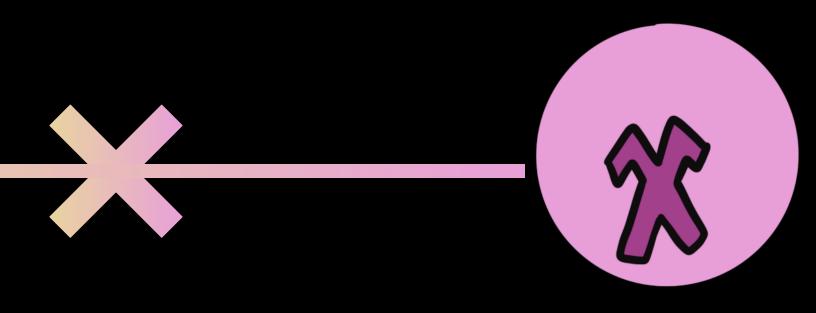
CONSIDERE DARK MATTER MIXES WITH ANOTHER PARICLE

IN THE STANDARD MODEL:

FLAVOR EIGENSTATES

 $\lfloor v_3 \rfloor$ MASS EIGENSTATES

ບາ



STERILE OR NON-INTERACTING STATE: DARK MATTER

CONSIDER DARK MATTER MXES WITH ANOTHER PART CLE

IN THE STANDARD MODEL:

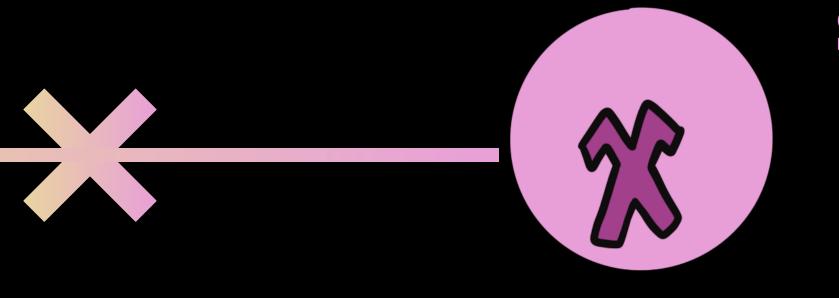
FLAVOR EIGENSTATES

23 MASS EIGENSTATES

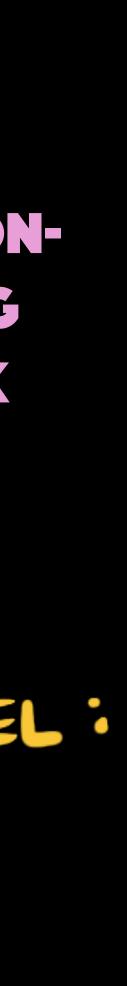
υ,

ບາ

- PHOTON AXIONS D NEUTRINO - STERILE NEUTRINO
- PHOTON DARK PHOTON
- BEYOND THE STANDARD MODEL:

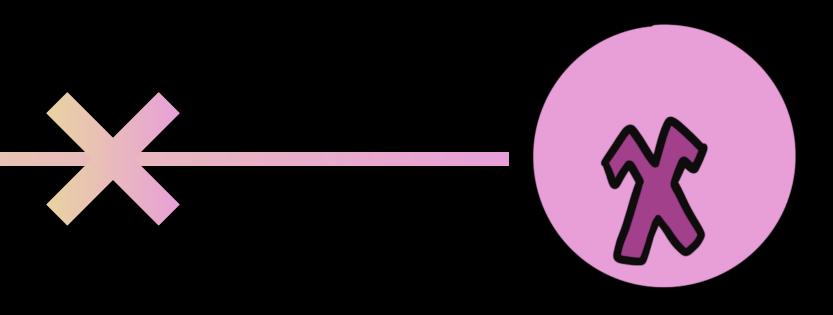


STERILE OR NON-INTERACTING STATE DARK MATTER



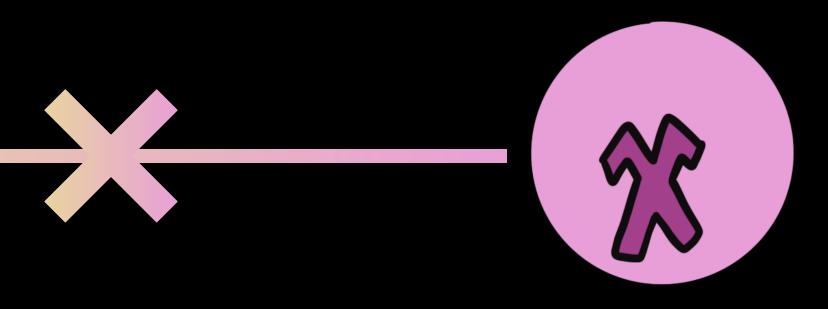
WHAT IF DARK MATTER MIXES WITH ANOTHER PARTICLE?

IN THE STANDARD MODEL: `ン, Ne $\mathcal{D}_{\mathbf{z}}$ $\sqrt[n]{\pi}$ MASS EIGENSTATES PRODUCED IN PICK UP DIFF. FLAVOR EIGENSTATES PHASES



WHAT IF DARK MATTER MIXES WITH ANOTHER PARTICLE?

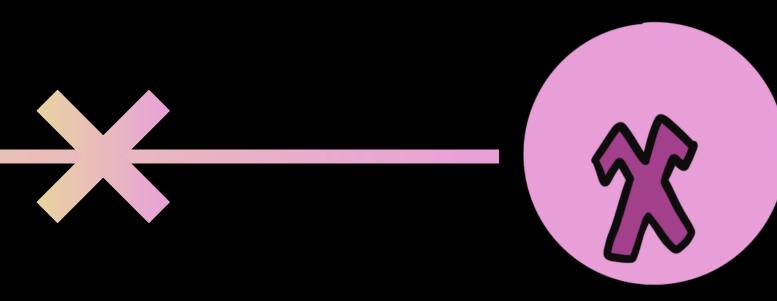
IN THE STANDARD MODEL: `ン, Ne υ₂ N7a. PRODUCED IN PICK UP DIFF. FLAVOR EIGENSTATES PHASES



MASS EIGENSTATES

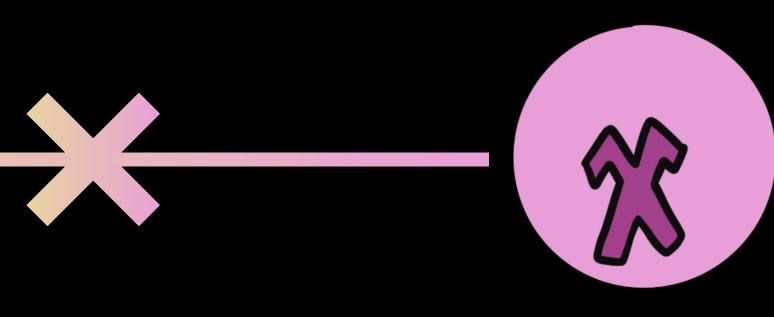
NEUTRINOS OSCILLATE CAN

DARK MATTER MAY ALSO BE SIMILARLY PRODUCED THROUGH OSCILLATIONS



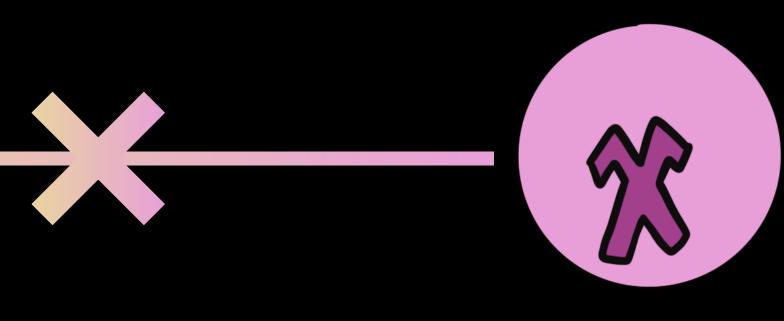
DARK MATTER MAY ALSO BE SIMILARLY PRODUCED THROUGH OSCILATIONS





DARK MATTER MAY ALSO BE SIMILARLY PRODUCED THROUGH OSCILATIONS

START OFF WITH VIN THE EARLY UNIVERSE, GENERATE A X DENSITY



THE PROBABILITY OF CONVERSION IS QUANTIFIED BY THE AMOUNT OF MIXING

 $\mathscr{L}_{\psi-\chi} \supset m_{\psi\chi} \left(\bar{\psi}\chi + h.c. \right)$

THE PROBABILITY OF CONVERSION IS QUANTIFIED BY THE AMOUNT OF MIXING

Parameterize in terms of an angle

W

 $\mathscr{L}_{\psi-\chi} \supset m_{\psi\chi} \left(\bar{\psi}\chi + h.c. \right)$

 $\begin{pmatrix} \psi \\ \chi \end{pmatrix}_{\text{flavor}} = \begin{pmatrix} \cos \theta_0 & -\sin \theta_0 \\ \sin \theta_0 & \cos \theta_0 \end{pmatrix} \begin{pmatrix} \psi \\ \chi \end{pmatrix}_{\text{mass}}$

THE PROBABILITY OF CONVERSION IS QUANTIFIED BY THE AMOUNT OF MIXING

Parameterize in terms of an angle

W

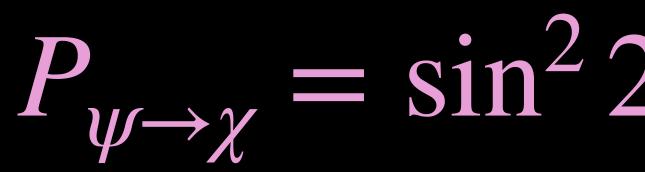


 $\mathscr{L}_{\psi-\chi} \supset m_{\psi\chi} \left(\bar{\psi}\chi + h.c. \right)$

 $\begin{pmatrix} \psi \\ \chi \end{pmatrix}_{\text{flavor}} = \begin{pmatrix} \cos \theta_0 & -\sin \theta_0 \\ \sin \theta_0 & \cos \theta_0 \end{pmatrix} \begin{pmatrix} \psi \\ \chi \end{pmatrix}_{\text{mass}}$

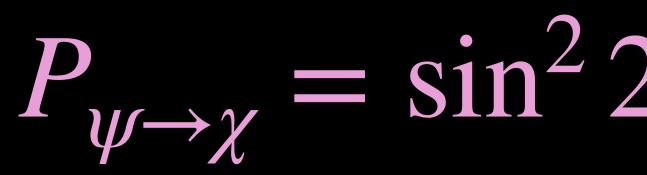
 $\tan 2\theta_0 = \frac{m_{\psi\chi}}{m_{\psi}^2 - m_{\chi}^2}$

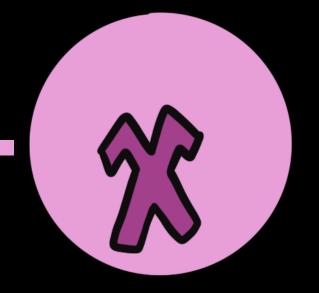
IN A VACUUM, ψ CONVERTS INTO χ WITH A PROBABILITY GIVEN BY



 $P_{\psi \to \chi} = \sin^2 2\theta_0 (1 - \cos \omega_{\rm osc} t)$

IN A VACUUM, ψ CONVERTS INTO χ WITH A PROBABILITY GIVEN BY



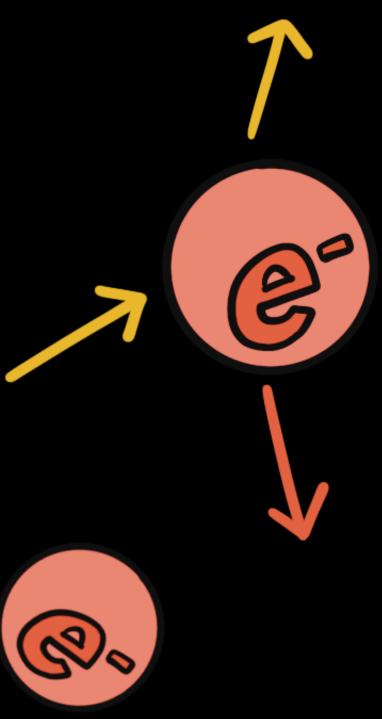


$P_{\psi \to \chi} = \sin^2 2\theta_0 (1 - \cos \omega_{\rm osc} t)$

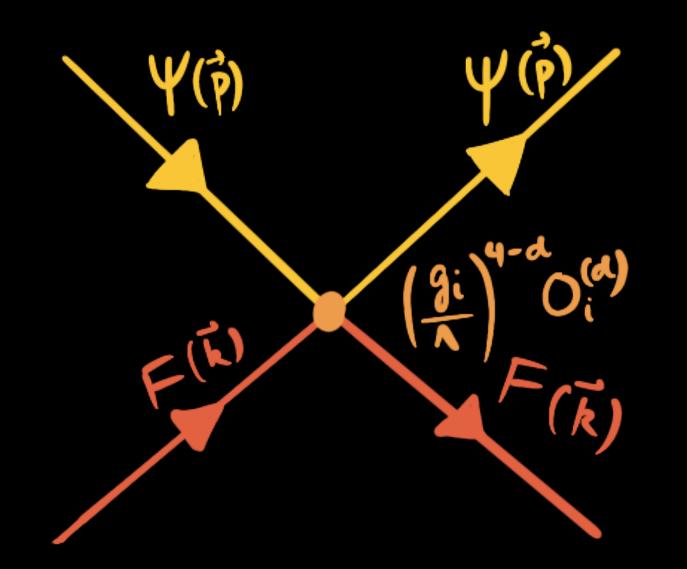
Oscillation frequency set by $\Delta m^2 = m_w^2 - m_\chi^2$

THE UNIVERSE IS NOT A VACUUM...

WINTERACTS WITH THE PARTICLES IN THE PLASMA



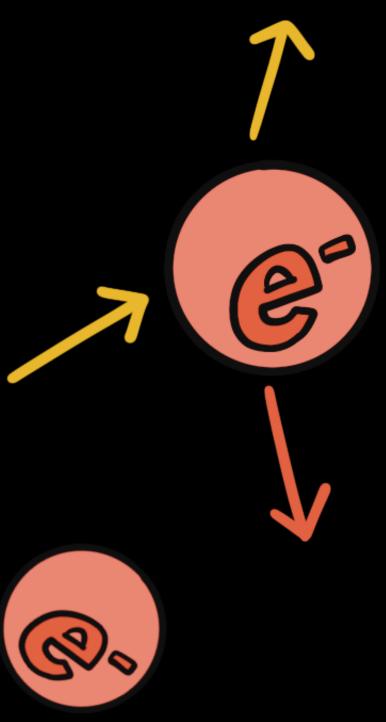
THE UNIVERSE IS NOT A VACUUM...



Ċ

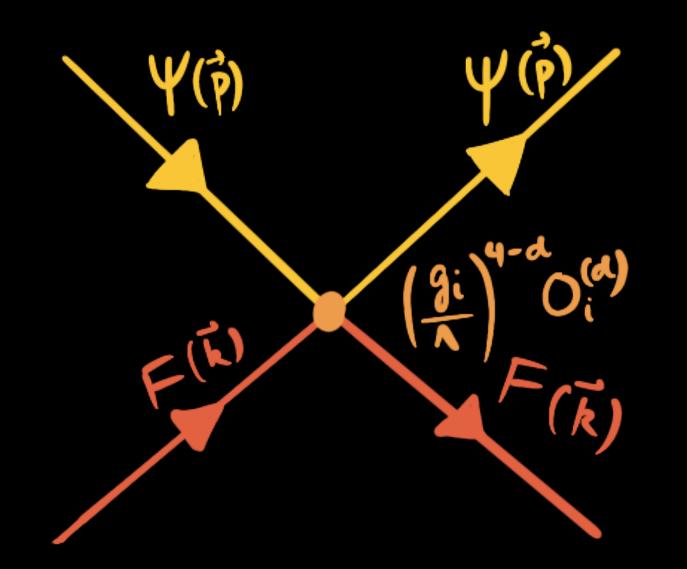
"FORWARD SCATTERING"

 $(\psi \text{ maintains its momentum})$



WINTERACTS WITH THE PARTICLES IN THE PLASMA

THE UNIVERSE IS NOT A VACUUM...



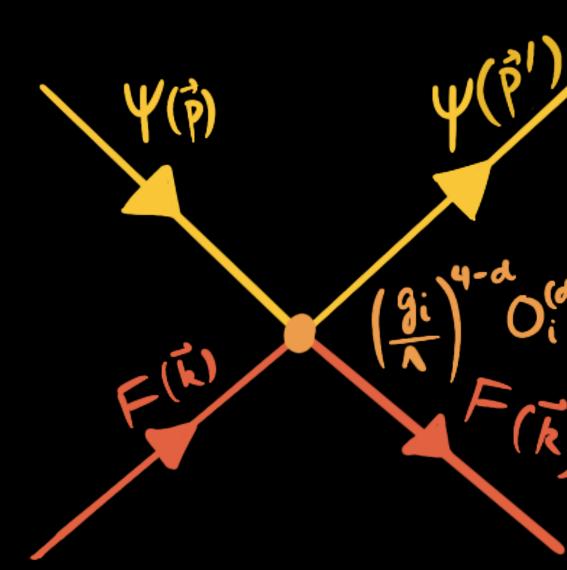
Ċ

"FORWARD SCATTERING"

 $(\psi \text{ maintains its momentum})$

WITH THE PARTICLES IN THE PLASMA

R

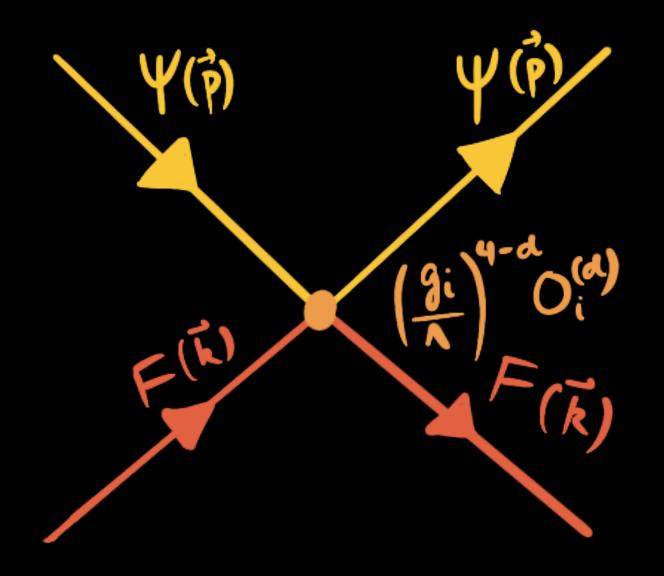


"COLLISIONS"

(Such as annihilations)



FORWARD SCATTERING MODIFIES THE DISPERSION OF ψ



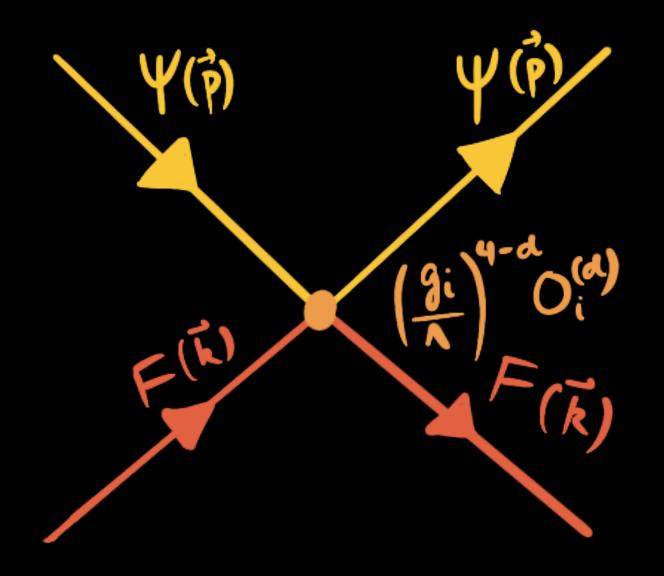
"FORWARD SCATTERING"

(ψ maintains its momentum)

...and therefore its effective mass in the plasma.

$$m_{\psi,\text{medium}}^2 = m_{\psi}^2 + \Delta m_T^2$$

FORWARD SCATTERING MODIFIES THE DISPERSION OF ψ



"FORWARD SCATTERING"

(ψ maintains its momentum)

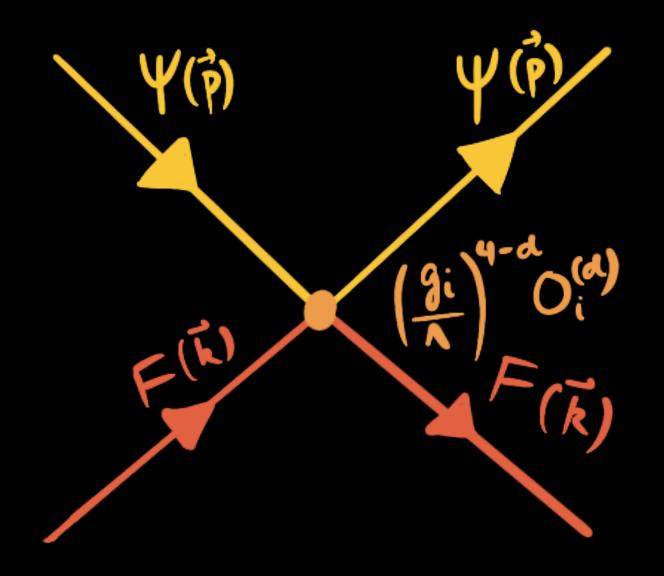
...and therefore its effective mass in the plasma.

$$m_{\psi,\text{medium}}^2 = m_{\psi}^2 + \Delta m_T^2$$

IN-MEDIUM MIXING ANGLE MODIFIED!

$$\tan 2\theta_m = \frac{2m_{\psi\chi}^2}{m_{\psi}^2 + \Delta m_T^2 - m_{\chi}^2}$$

FORWARD SCATTERING MODIFIES THE DISPERSION OF ψ



"FORWARD SCATTERING"

(ψ maintains its momentum)

...and therefore its effective mass in the plasma.

$$m_{\psi,\text{medium}}^2 = m_{\psi}^2 + \Delta m_T^2$$

IN-MEDIUM MIXING ANGLE MODIFIED!

 $\tan 2\theta_m = \frac{2m_{\psi\chi}^2}{m_{\psi}^2 + \Delta m_T^2 - m_{\chi}^2}$ Function of temperature! (background fermion density)

...POTENTIALLY ENHANCING THE MIXING ANGLE

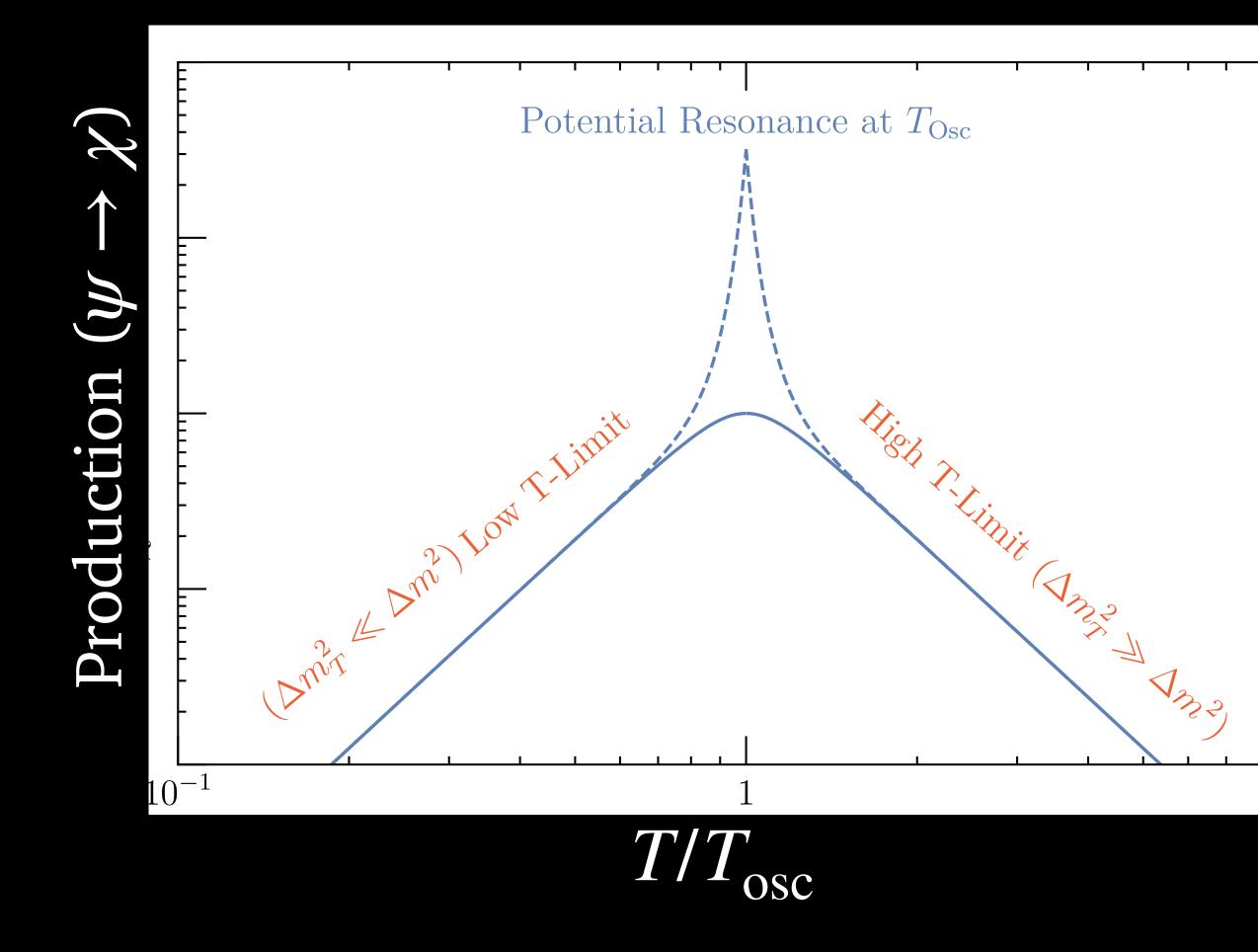
 $\tan 2\theta_m = \frac{2m_{\psi\chi}^2}{m_{\psi}^2 + \Delta m_T^2 - m_{\chi}^2}$

RESONANT ENHANCEMENT AT T_{osc} WHEN $\Delta m_T^2 = m_{\psi}^2 - m_{\chi}^2$

14

...POTENTIALLY ENHANCING THE MIXING ANGLE

10

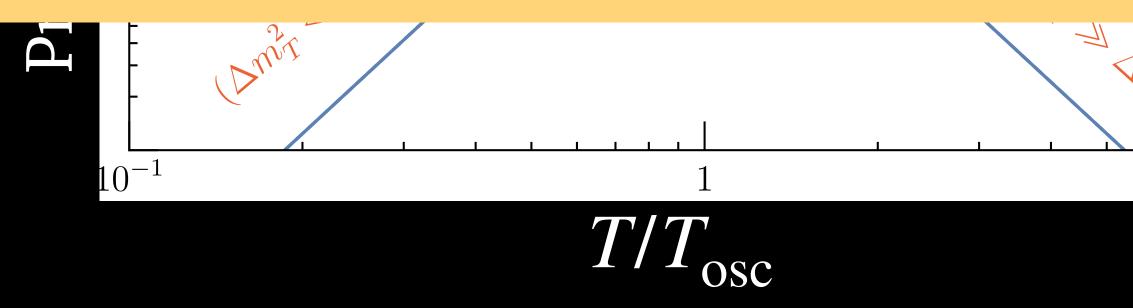


 $= \frac{2m_{\psi\chi}^2}{m_{\psi}^2 + \Delta m_T^2 - m_{\chi}^2}$ $\tan 2\theta_m$

RESONANT ENHANCEMENT AT T_{osc} WHEN $\Delta m_T^2 = m_\psi^2 - m_\chi^2$

14

POTENTIALLY ENHANCING THE MIXING ANGLE

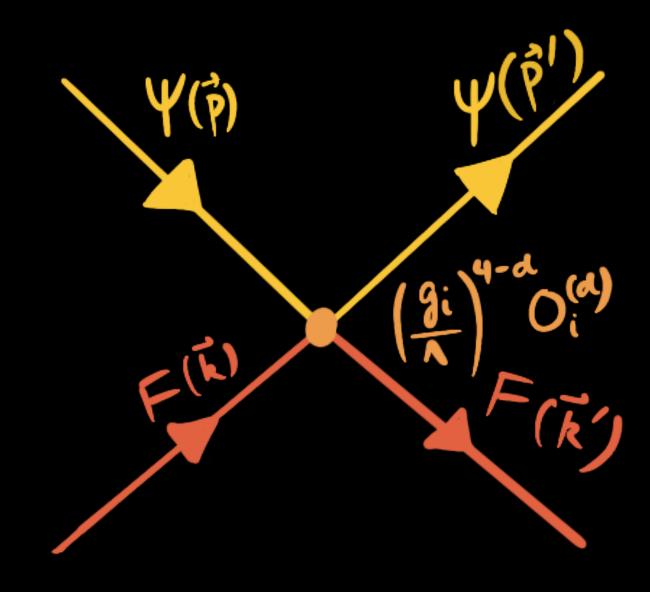


In-medium effects result in a temperature dependent mixing angle!

Jn22,

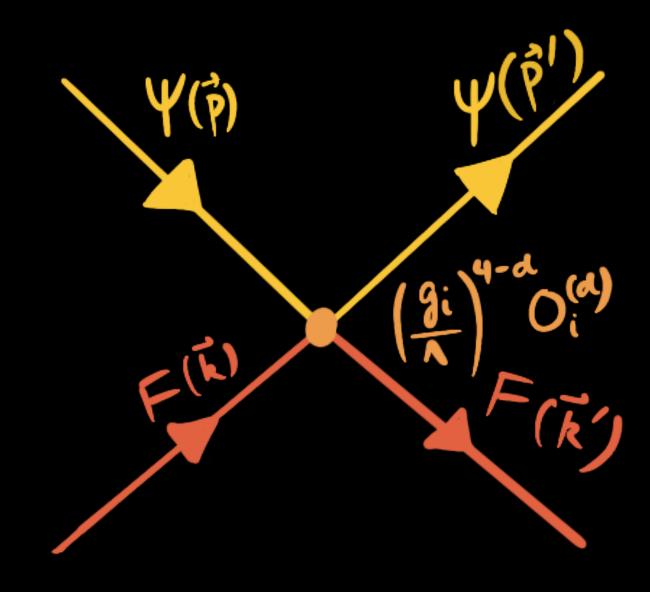
 $\Delta m_T^2 = m_W^2 - m_\gamma^2$

COLLISIONS SPOIL THE COHERENCE BETWEEN ψ and χ

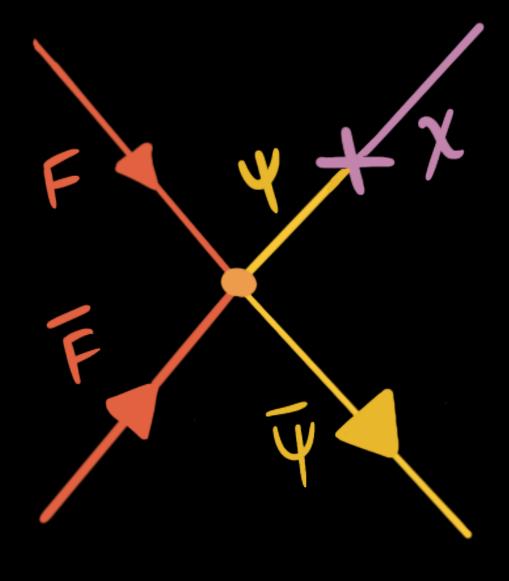


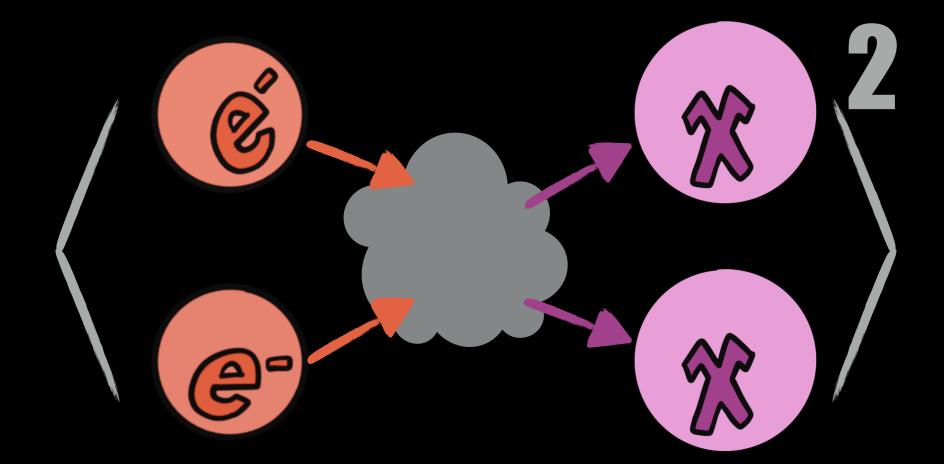
-- AND DAMP THE COHERENT OSCILLATIONS

COLLISIONS SPOIL THE COHERENCE BETWEEN ψ and χ



... AND DAMP THE COHERENT **OSCILLATIONS**



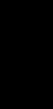


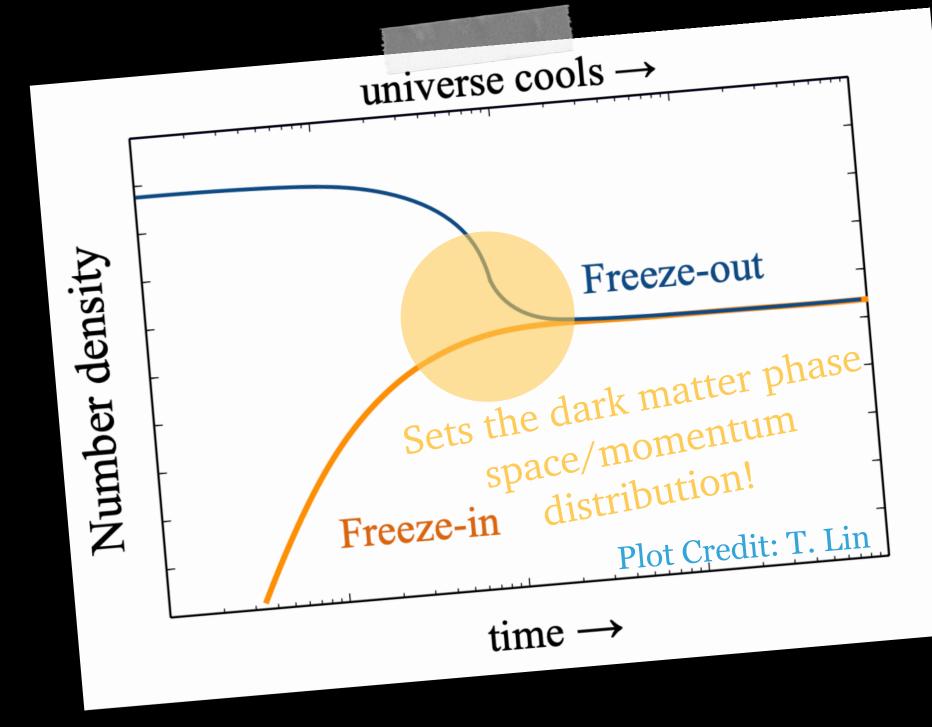
FREEZE-IN/FREEZE-OUT

- Track quantum amplitudes, Oscillations are coherent processes!

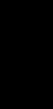
Assume that everything happens in a vacuum

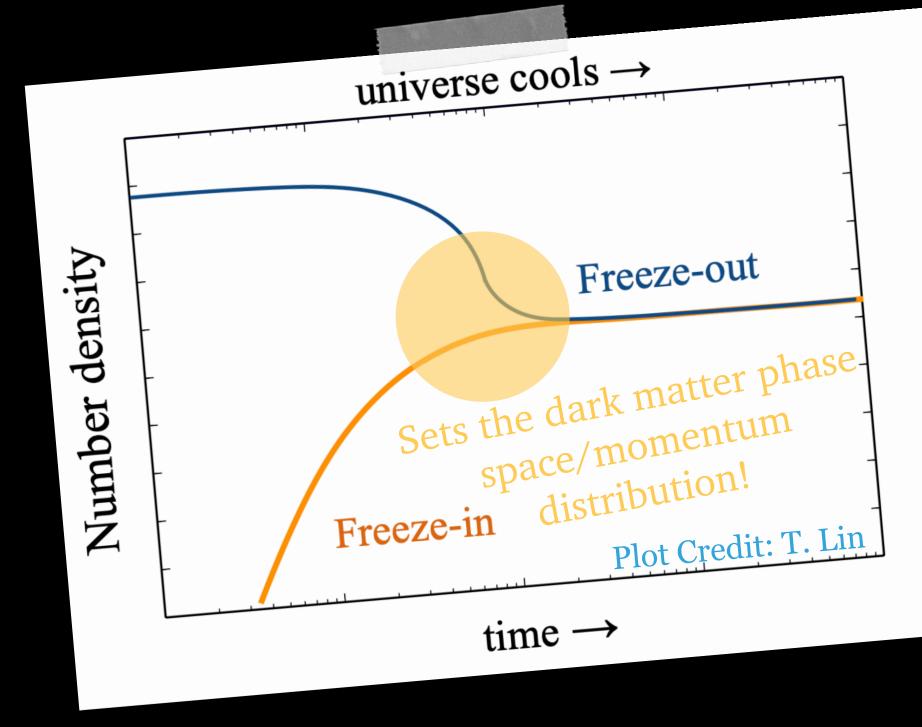
 Incorporate the effect of finite temperature and density of the background



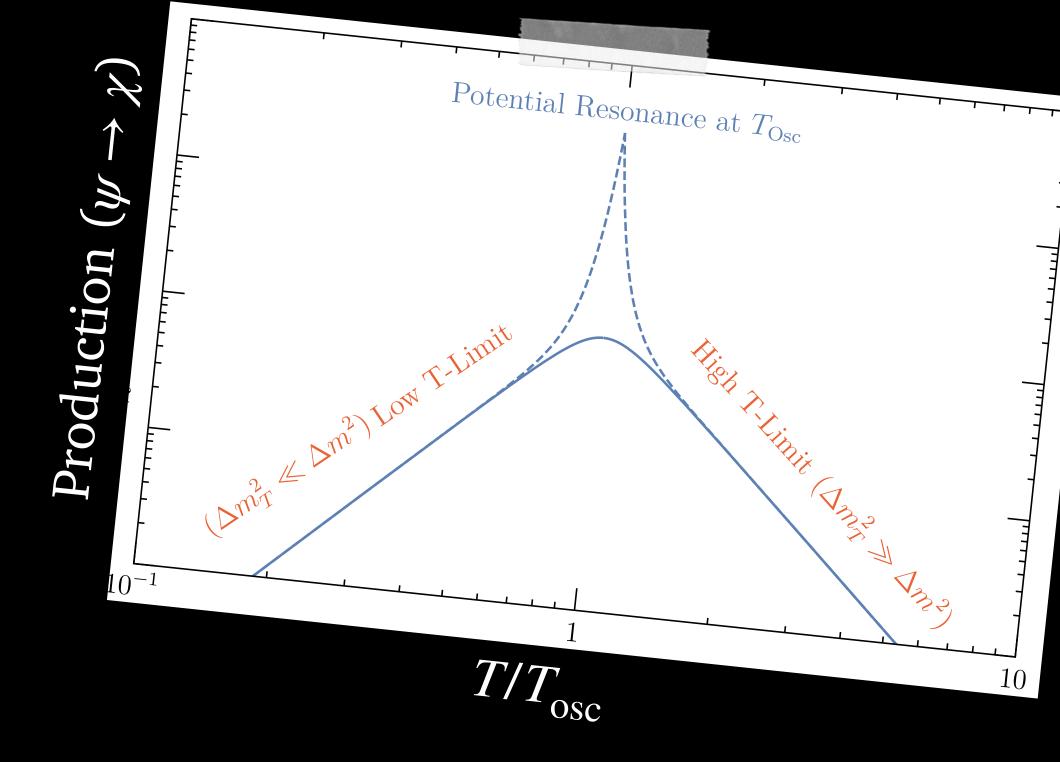


FREEZE-IN/FREEZE-OUT

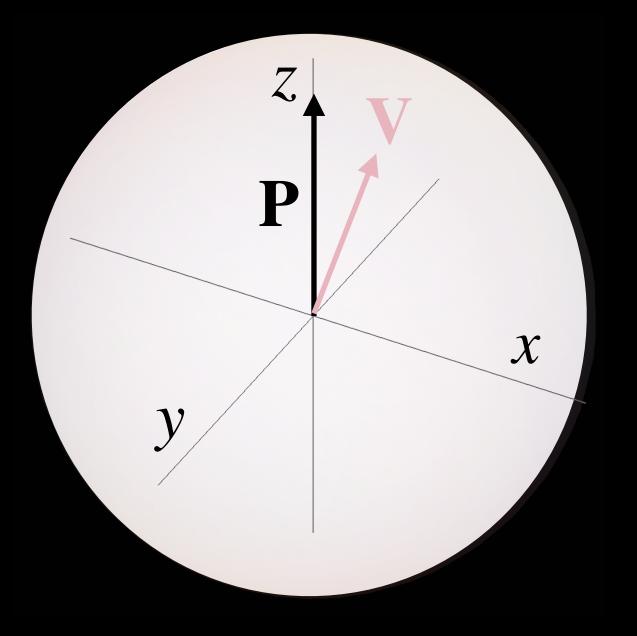




FREEZE-IN/FREEZE-OUT

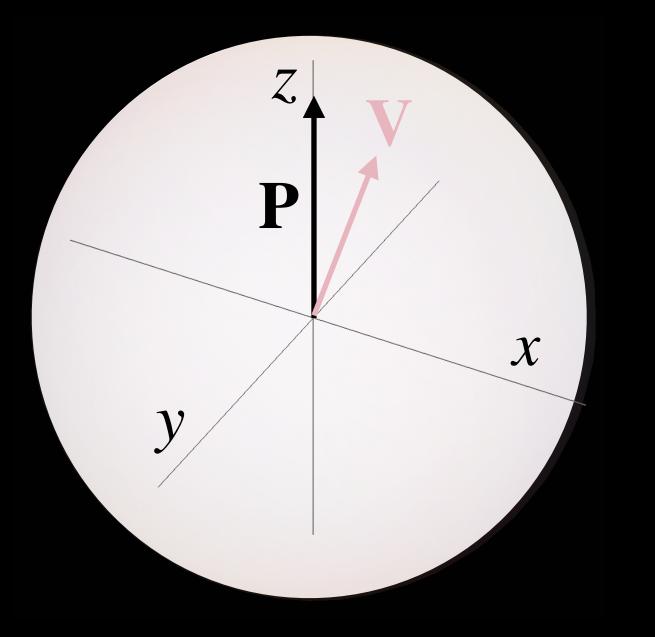


BUTHOW DOES ONE CALCULATE THE DARK MATTER RELCABUNDANCE ACCOUNTING FOR - COHERENT AND INCOHERENT EFFECTS - NTERACTIONS WITH THE BACKGROUND - RESONANCES IN THE PARAMETER SPACE



 $\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{V} \times \mathbf{P} - D \mathbf{P}_{\mathrm{T}} + \dot{P}_{0} \,\hat{\mathbf{z}}$

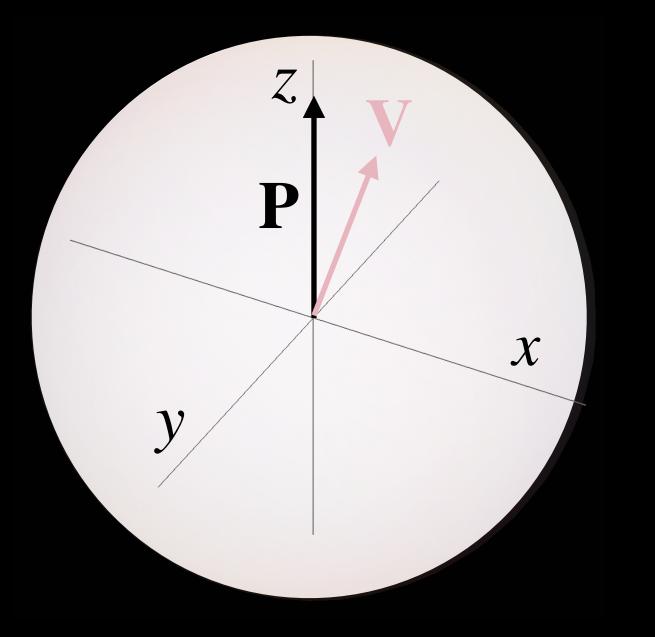
ROMP polarization with



 $P_z = f_{\psi}(p) - f_{\chi}(p)$

 $\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{V} \times \mathbf{P} - D \mathbf{P}_{\mathrm{T}} + \dot{P}_{0} \,\hat{\mathbf{z}}$

ROMP polarization with $P_z = f_{\psi}(p) - f_{\chi}(p)$

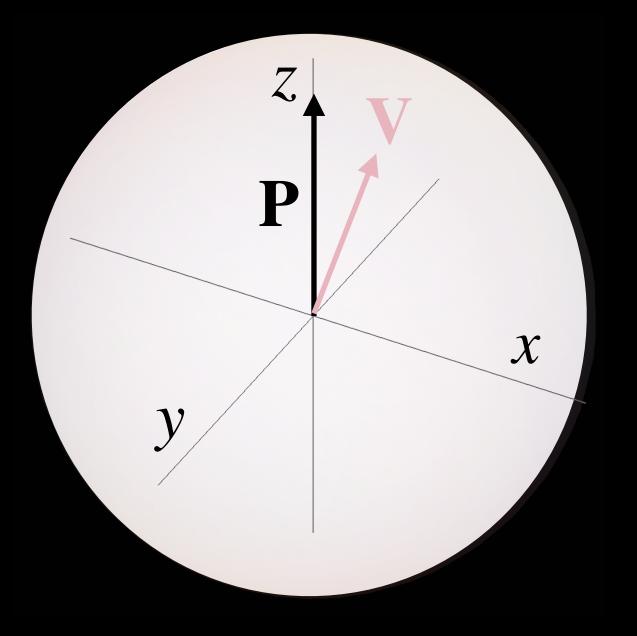


 $\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{V} \times \mathbf{P} - D \mathbf{P}_{\mathrm{T}} + \dot{P}_{0} \,\hat{\mathbf{z}}$

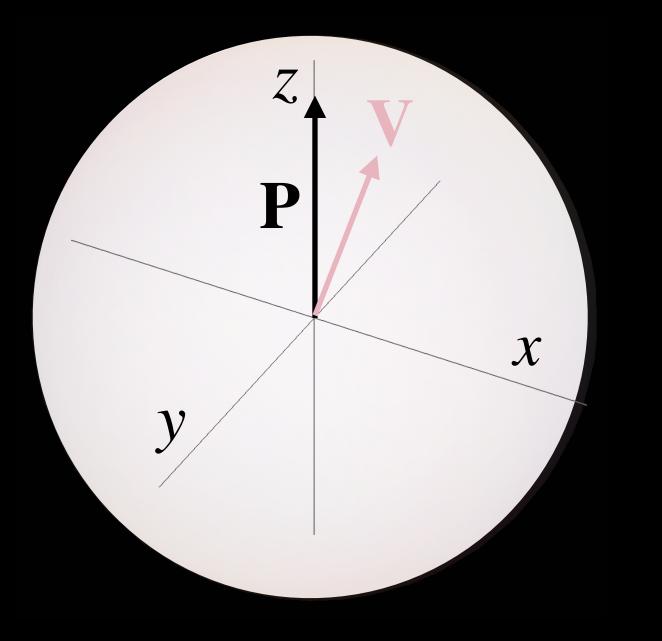
 $P_0 = f_{\psi}(p) + f_{\chi}(p)$

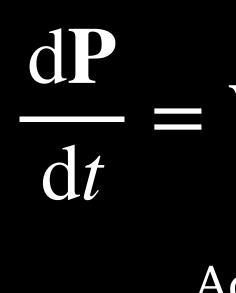
ROMP polarization with $P_z = f_{\psi}(p) - f_{\chi}(p)$ $P_0 = f_{\psi}(p) + f_{\chi}(p)$ P $\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{V} \times \mathbf{P} - D \mathbf{P}_{\mathrm{T}} + \dot{P}_{0} \hat{\mathbf{z}}$ ${\mathcal X}$ V ROMP mixing $\mathbf{V} = \omega_{\rm osc} \left(\sin 2\theta \, \hat{\mathbf{x}} + \cos 2\theta \, \hat{\mathbf{z}} \right)$

ROMP polarization with $P_z = f_{\psi}(p) - f_{\chi}(p)$ $P_0 = f_{\psi}(p) + f_{\chi}(p)$ P $\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{V} \times \mathbf{P} - D\mathbf{P}_{\mathrm{T}} + \dot{P}_{0}\,\hat{\mathbf{z}}$ ${\mathcal X}$ Damping ROMP mixing $D \sim \Gamma_{\psi \rightarrow \text{everything}}$ $\mathbf{V} = \omega_{\rm osc} \left(\sin 2\theta \, \hat{\mathbf{x}} + \cos 2\theta \, \hat{\mathbf{z}} \right)$



 $\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{V} \times \mathbf{P} - D \mathbf{P}_{\mathrm{T}} + \dot{P}_{0} \,\hat{\mathbf{z}}$

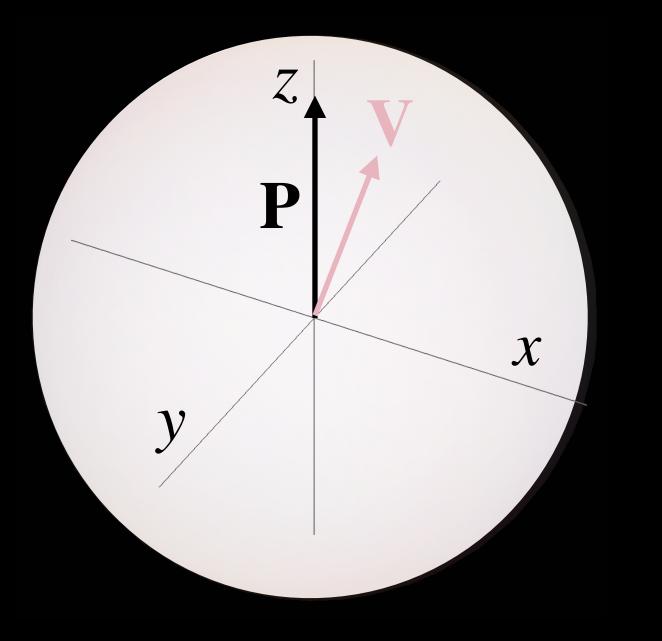


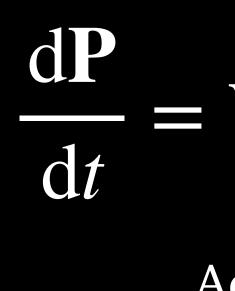


(quantum amplitudes)

$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{V} \times \mathbf{P} - D \mathbf{P}_{\mathrm{T}} + \dot{P}_{0} \hat{\mathbf{z}}$

Accounts for coherent effects





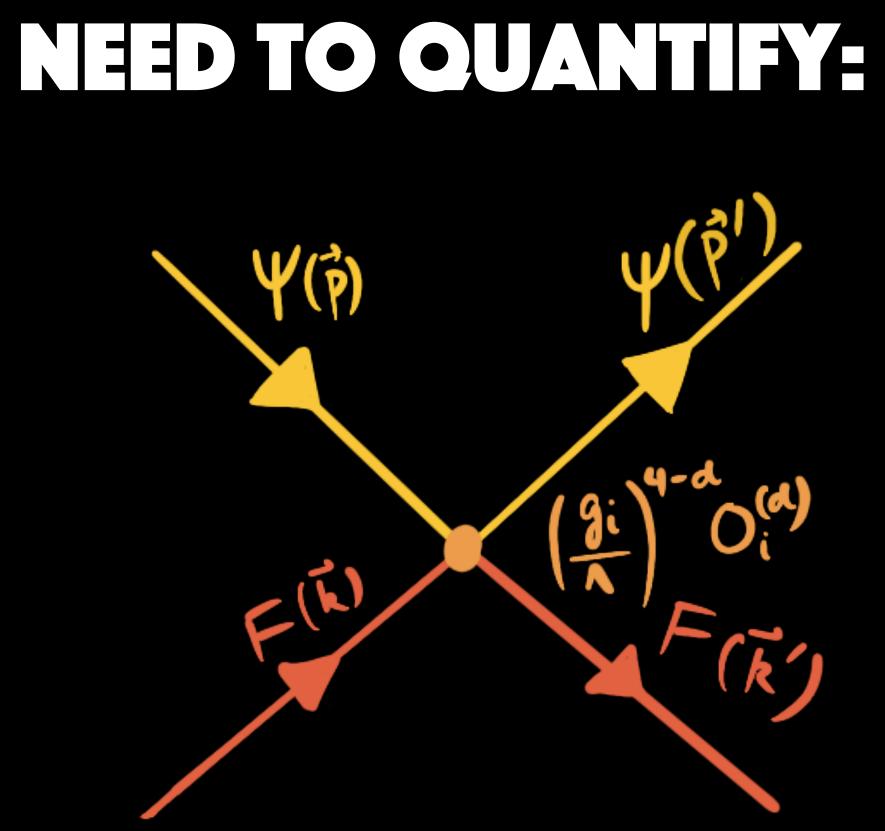
(quantum amplitudes)

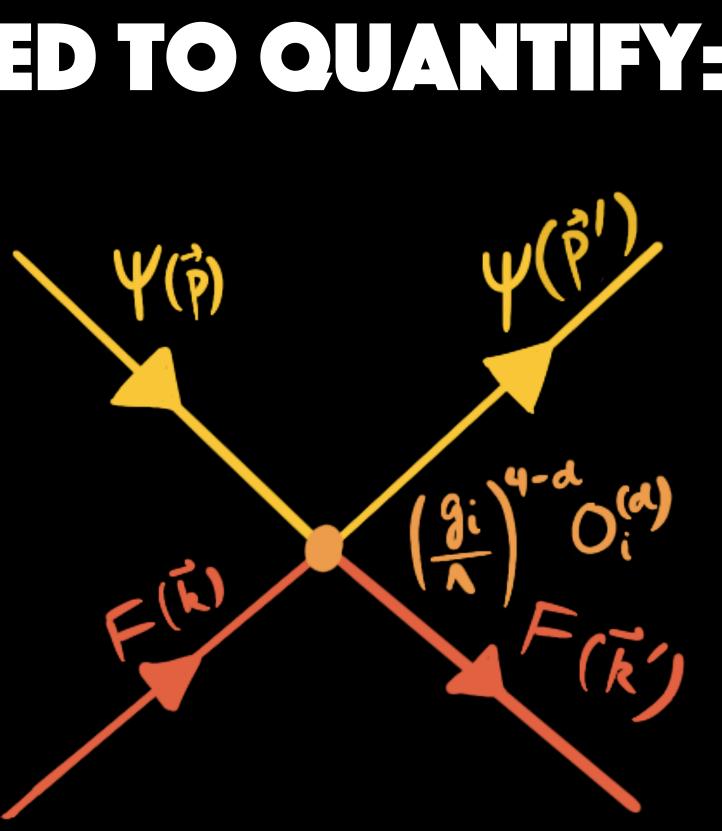
Accounts for incoherent effects

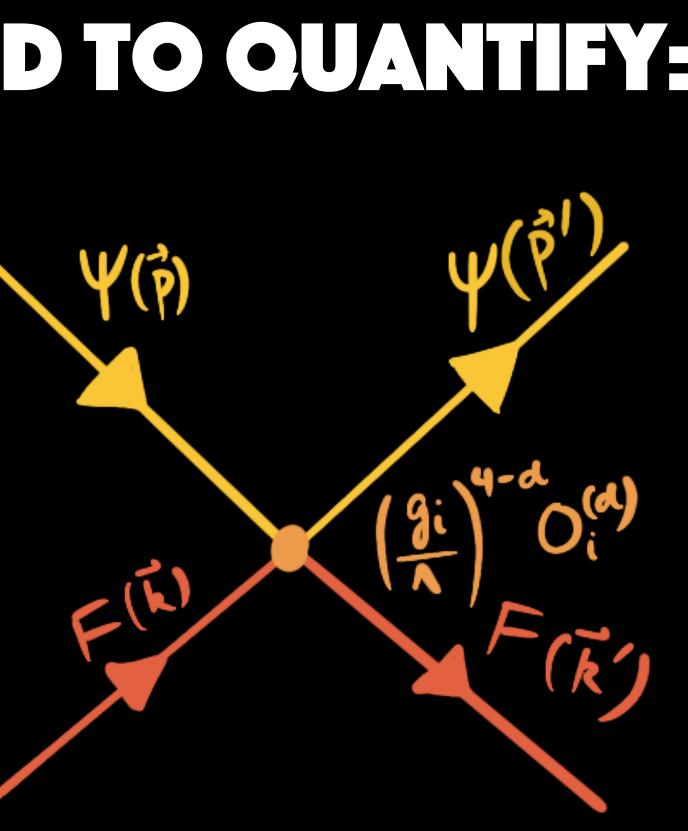
(quantum probability)

$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{V} \times \mathbf{P} - D \mathbf{P}_{\mathrm{T}} + \dot{P}_{0} \hat{\mathbf{z}}$

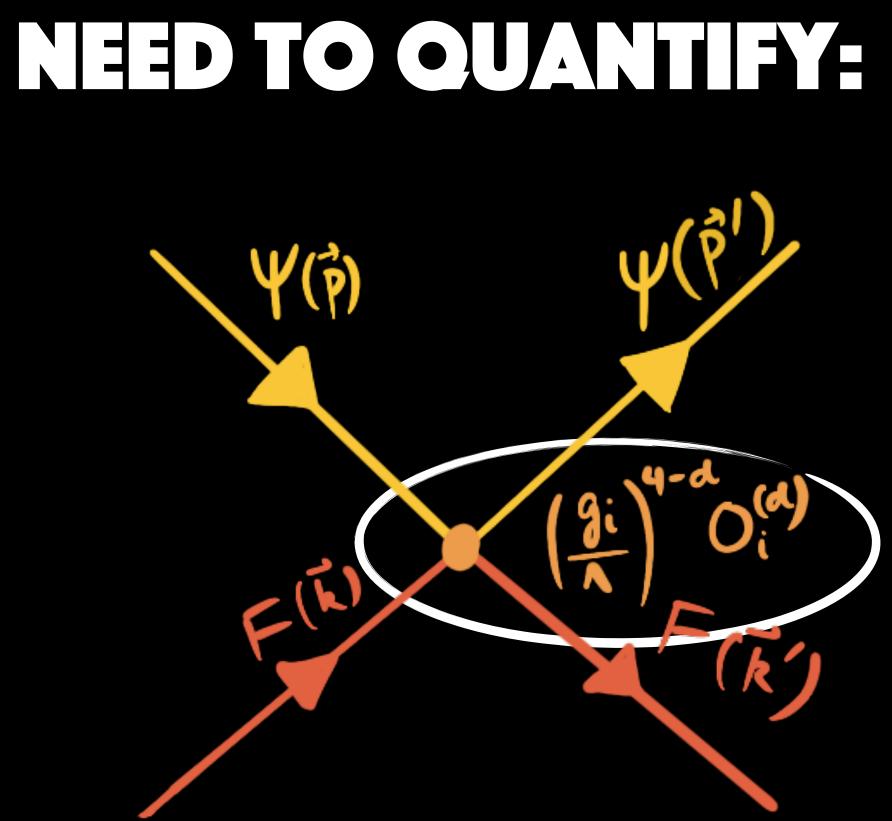
Accounts for coherent effects







TIME TO TALK ABOUT COUPLINGS! FINALLY

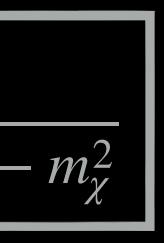


DIM 6: $\mathscr{L}_V^{(6)} = (\bar{\psi}\gamma^\mu F)g_{\mu\nu}(\bar{F}\gamma^\nu\psi)$: Δr

 $2m_{\psi\chi}^2$ $\tan 2\theta_m = \frac{1}{m_{\psi}^2 + \Delta m_T^2 - m_{\chi}^2}$

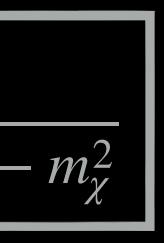
May be small!

$$n_T^2 \sim \frac{T^2}{\Lambda^2} \frac{1}{T} (n_F - n_{\bar{F}})$$



DIM 8: $\mathscr{L}_{V}^{(6)} = \frac{1}{\Lambda^{4}} (\bar{\psi}\gamma^{\mu}F)(g_{\mu\nu}q^{2} + q_{\mu}q_{\nu})(\bar{F}\gamma^{\nu}\psi): \Delta m_{T}^{2} \sim -\frac{T^{4}}{\Lambda^{4}}\frac{1}{T}(n_{F} + n_{\bar{F}})$

 $\tan 2\theta_m = \frac{2m_{\psi\chi}^2}{m_{\psi}^2 + \Delta m_T^2 - m_{\chi}^2}$

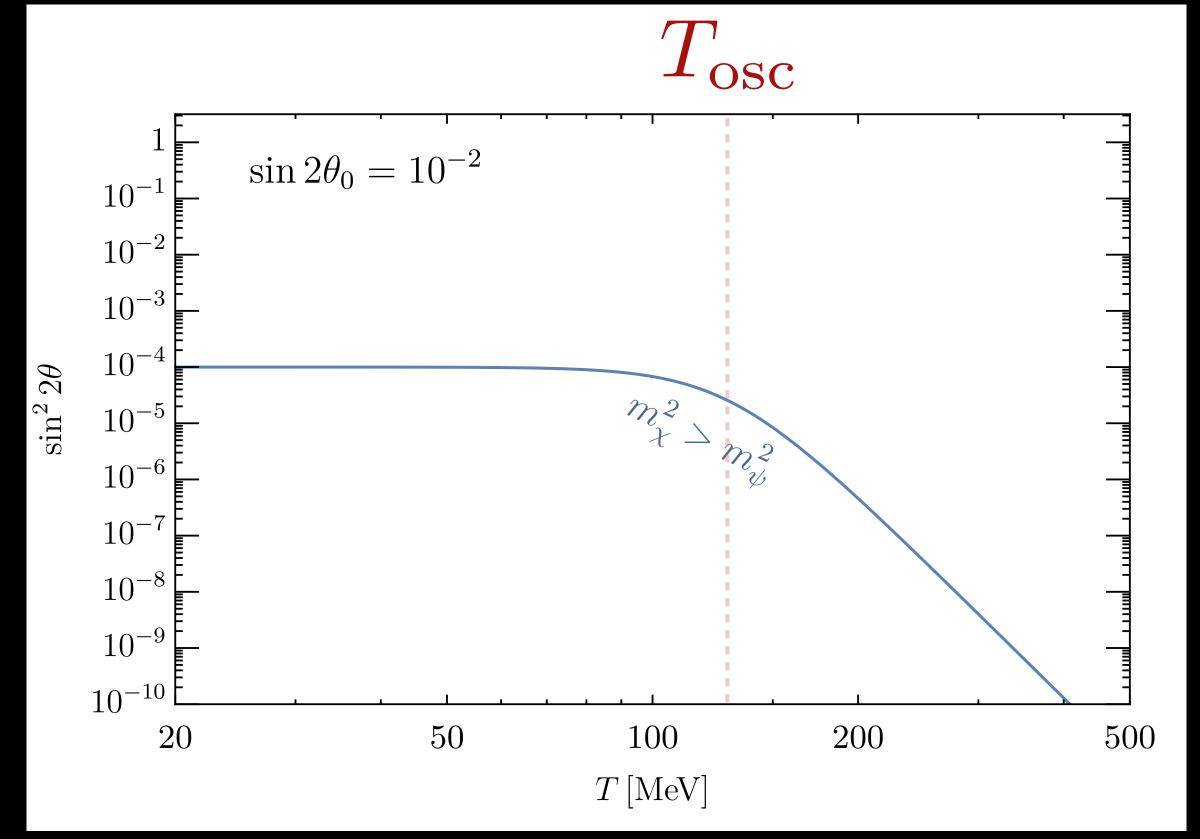


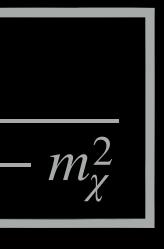
DIM 8: $\mathscr{L}_{V}^{(6)} = \frac{1}{\Lambda^{4}} (\bar{\psi}\gamma^{\mu}F)(g_{\mu\nu}q^{2} + q_{\mu}q_{\nu})(\bar{F}\gamma^{\nu}\psi):$

If
$$m_{\chi}^2 > m_{\psi}^2$$
: No Resonance!

Scattering induced incoherent production!

$$\Delta m_T^2 \sim -\frac{T^4}{\Lambda^4} \frac{1}{T} (n_F + n_{\bar{F}})$$





 $2m_{\psi\chi}^2$

 $m_w^2 + \Delta m_T^2$

 $\tan 2\theta_m =$

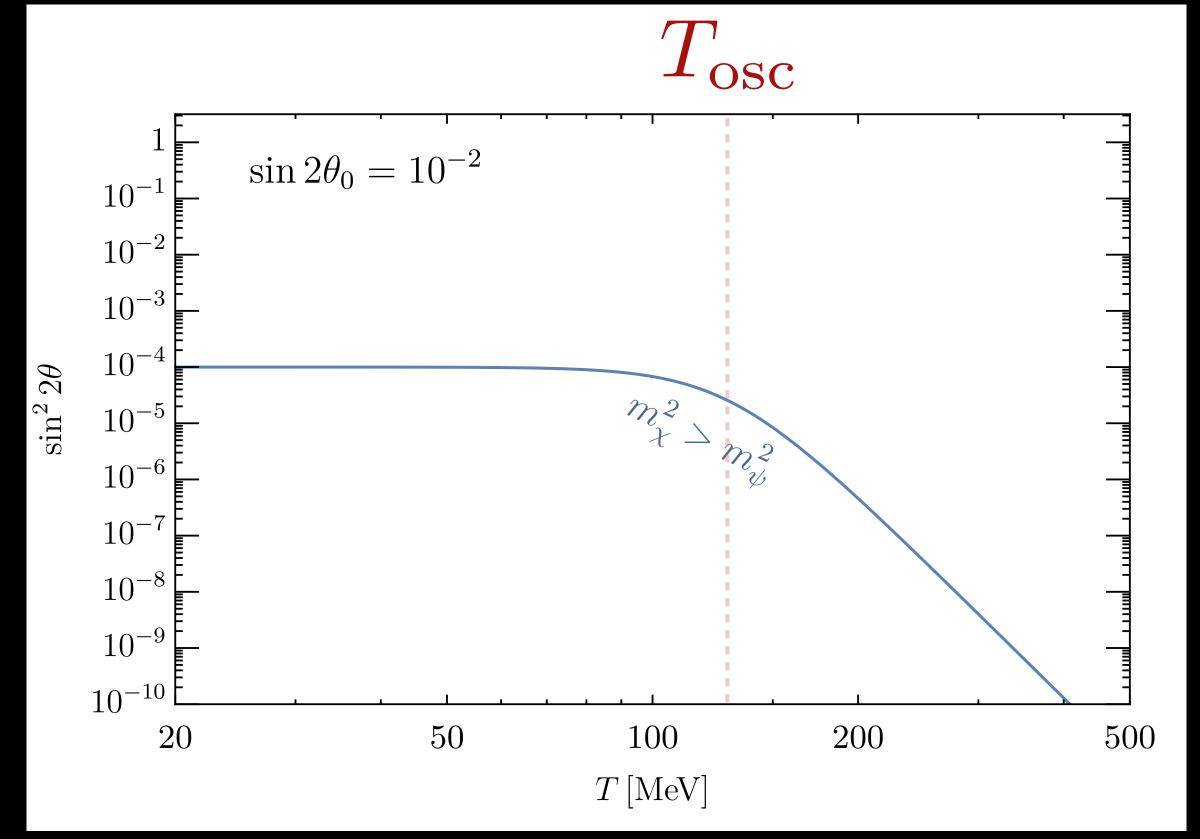
DIM 8: $\mathscr{L}_{V}^{(6)} = \frac{1}{\Lambda^{4}} (\bar{\psi}\gamma^{\mu}F)(g_{\mu\nu}q^{2} + q_{\mu}q_{\nu})(\bar{F}\gamma^{\nu}\psi):$

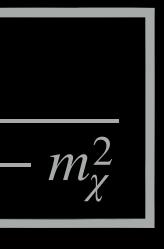
If
$$m_{\chi}^2 > m_{\psi}^2$$
: No Resonance!

Scattering induced incoherent production!

 χ may decay: account for lifetime of χ

$$\Delta m_T^2 \sim -\frac{T^4}{\Lambda^4} \frac{1}{T} (n_F + n_{\bar{F}})$$





 $2m_{w\gamma}^2$

 $m_{w}^{2} + \Delta m$

 $\tan 2\theta_m =$

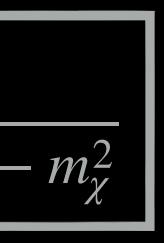
DIM 8: $\mathscr{L}_{V}^{(6)} = \frac{1}{\Lambda^{4}} (\bar{\psi}\gamma^{\mu}F)(g_{\mu\nu}q^{2} + q_{\mu}q_{\nu})(\bar{F}\gamma^{\nu}\psi): \Delta m_{T}^{2} \sim -\frac{T^{4}}{\Lambda^{4}} \frac{1}{T}(n_{F} + n_{\bar{F}})$

If
$$m_{\chi}^2 > m_{\psi}^2$$
: No Resonance!

Scattering induced incoherent production!

 χ may decay: account for lifetime of χ

 $\tan 2\theta_m = \frac{2m_{\psi\chi}^2}{m_{\psi}^2 + \Delta m_T^2 - m_{\chi}^2}$

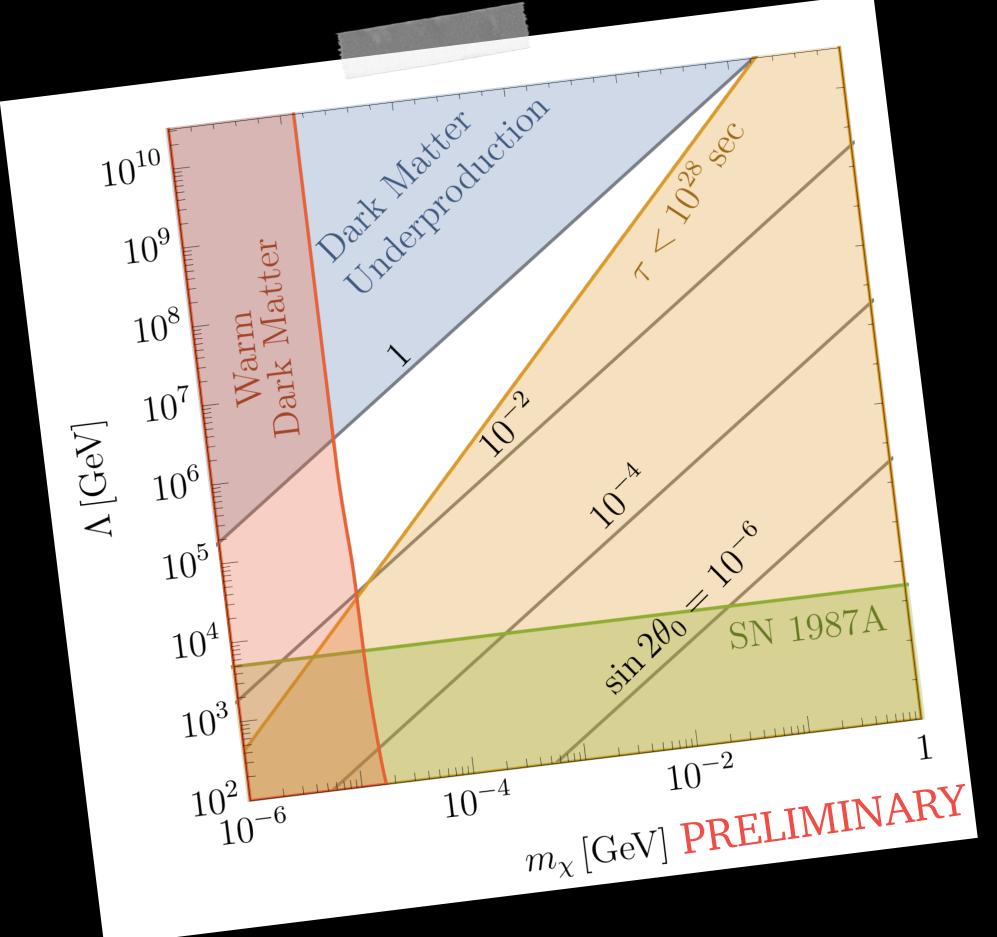


DIM 8: $\mathscr{L}_{V}^{(6)} = \frac{1}{\Lambda^{4}} (\bar{\psi}\gamma^{\mu}F)(g_{\mu\nu}q^{2} + q_{\mu}q_{\nu})(\bar{F}\gamma^{\nu}\psi): \quad \Delta m_{T}^{2} \sim -\frac{T^{4}}{\Lambda^{4}} \frac{1}{T}(n_{F} + n_{\bar{F}})$

If
$$m_{\chi}^2 > m_{\psi}^2$$
: No Resonance!

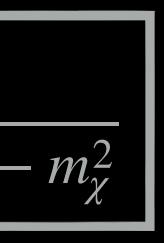
Scattering induced incoherent production!

 χ may decay: account for lifetime of χ



 $\tan 2\theta_m =$

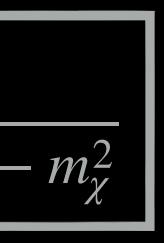
 $m_{w}^2 + \Delta m_{e}$



DIM 8: $\mathscr{L}_{V}^{(6)} = \frac{1}{\Lambda^{4}} (\bar{\psi}\gamma^{\mu}F)(g_{\mu\nu}q^{2} + q_{\mu}q_{\nu})(\bar{F}\gamma^{\nu}\psi): \Delta m_{T}^{2} \sim -\frac{T^{4}}{\Lambda^{4}}\frac{1}{T}(n_{F} + n_{\bar{F}})$

If $m_{\gamma}^2 < m_{\psi}^2$: Resonance

 $\tan 2\theta_m = \frac{2m_{\psi\chi}^2}{m_{\psi}^2 + \Delta m_T^2 - m_{\chi}^2}$

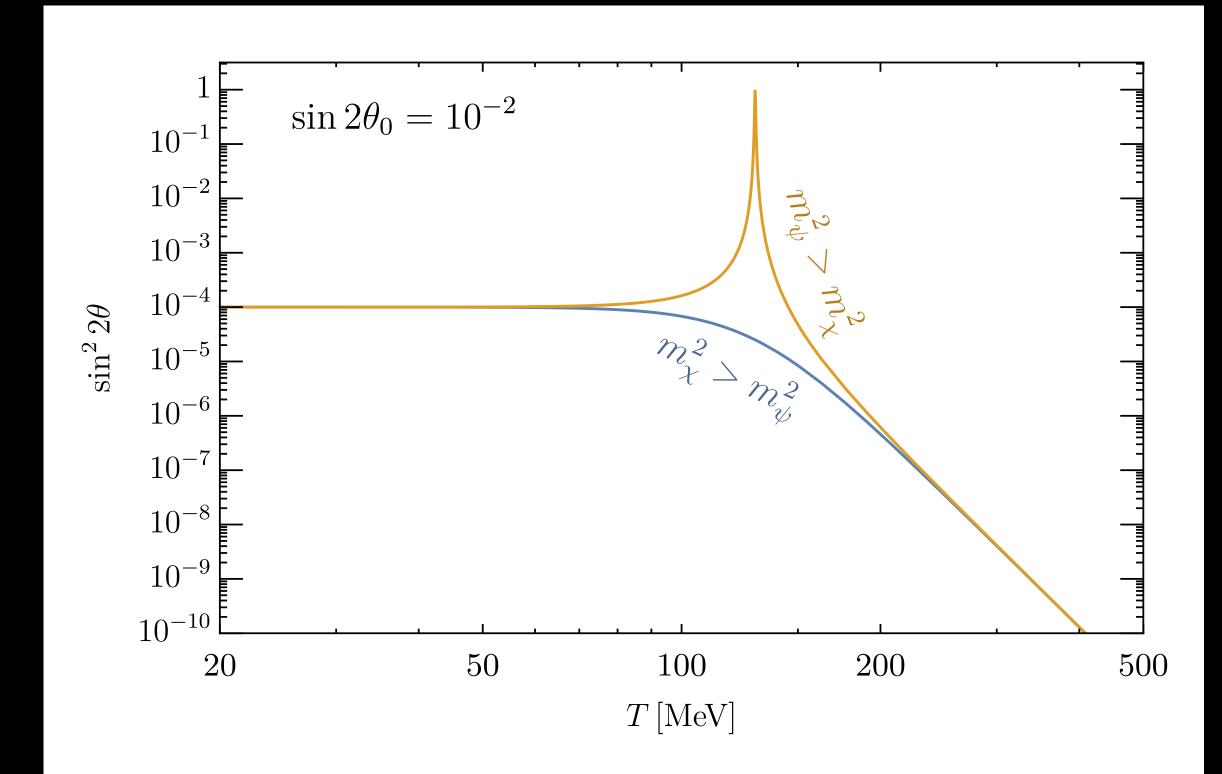


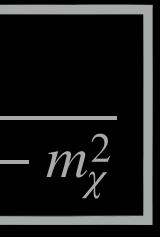
 $\mathscr{L}_V^{(6)} = \frac{1}{\Lambda^4} (\bar{\psi}\gamma^\mu F) (g_{\mu\nu}q^2 + q_\mu q_\nu) (\bar{F}\gamma^\nu \psi) :$ **DIM 8:**

If $m_{\chi}^2 < m_{\psi}^2$: Resonance

 $2m_{\psi\chi}^2$ $\tan 2\theta_m =$ $m_w^2 + \Delta m_T^2 - m_\chi^2$

$$\Delta m_T^2 \sim -\frac{T^4}{\Lambda^4} \frac{1}{T} (n_F + n_{\bar{F}})$$





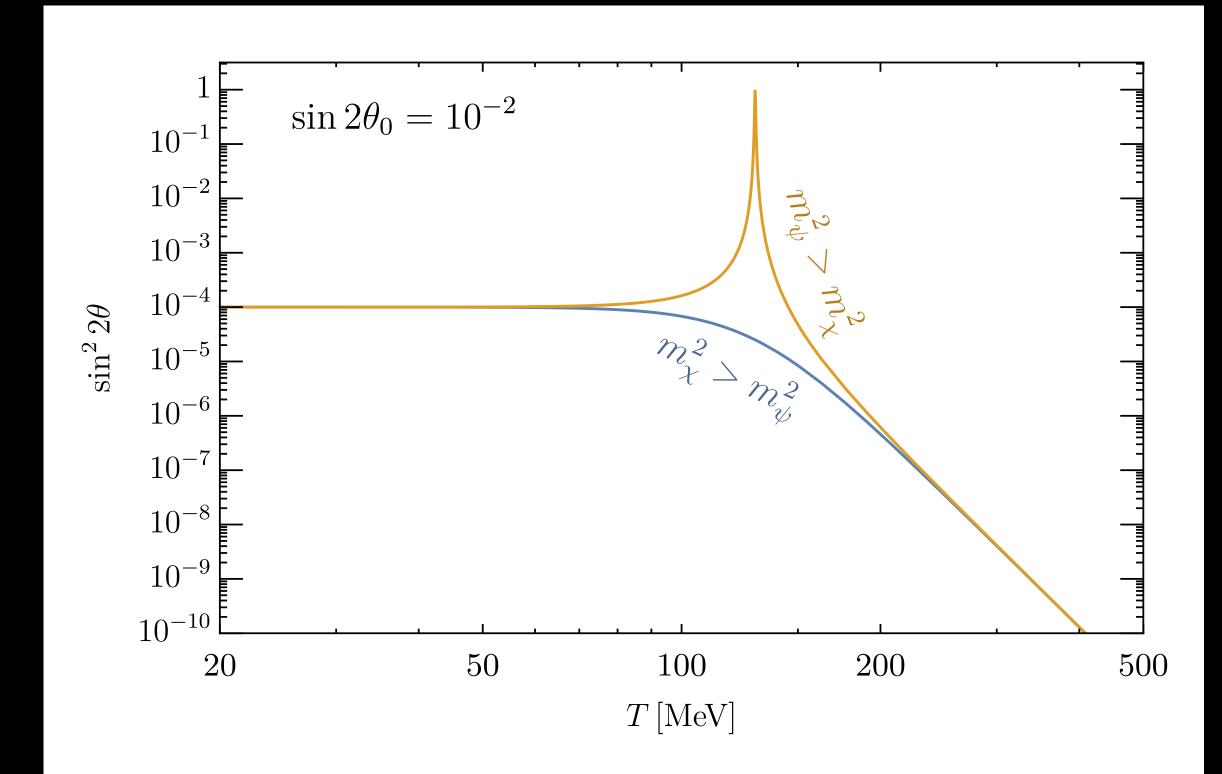
 $\mathscr{L}_V^{(6)} = \frac{1}{\Lambda^4} (\bar{\psi}\gamma^\mu F) (g_{\mu\nu}q^2 + q_\mu q_\nu) (\bar{F}\gamma^\nu \psi) :$ **DIM 8:**

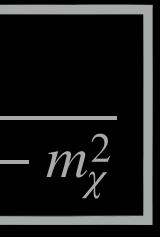
If
$$m_{\chi}^2 < m_{\psi}^2$$
: Resonance

Both coherent (oscillations) and incoherent (scattering induced) production

 $2m_{wy}^2$ $\tan 2\theta_m =$ $m_{\mu\nu}^2 + \Delta m$

$$\Delta m_T^2 \sim -\frac{T^4}{\Lambda^4} \frac{1}{T} (n_F + n_{\bar{F}})$$





 $\mathscr{L}_V^{(6)} = \frac{1}{\Lambda^4} (\bar{\psi}\gamma^\mu F) (g_{\mu\nu}q^2 + q_\mu q_\nu) (\bar{F}\gamma^\nu \psi) :$ **DIM 8:**

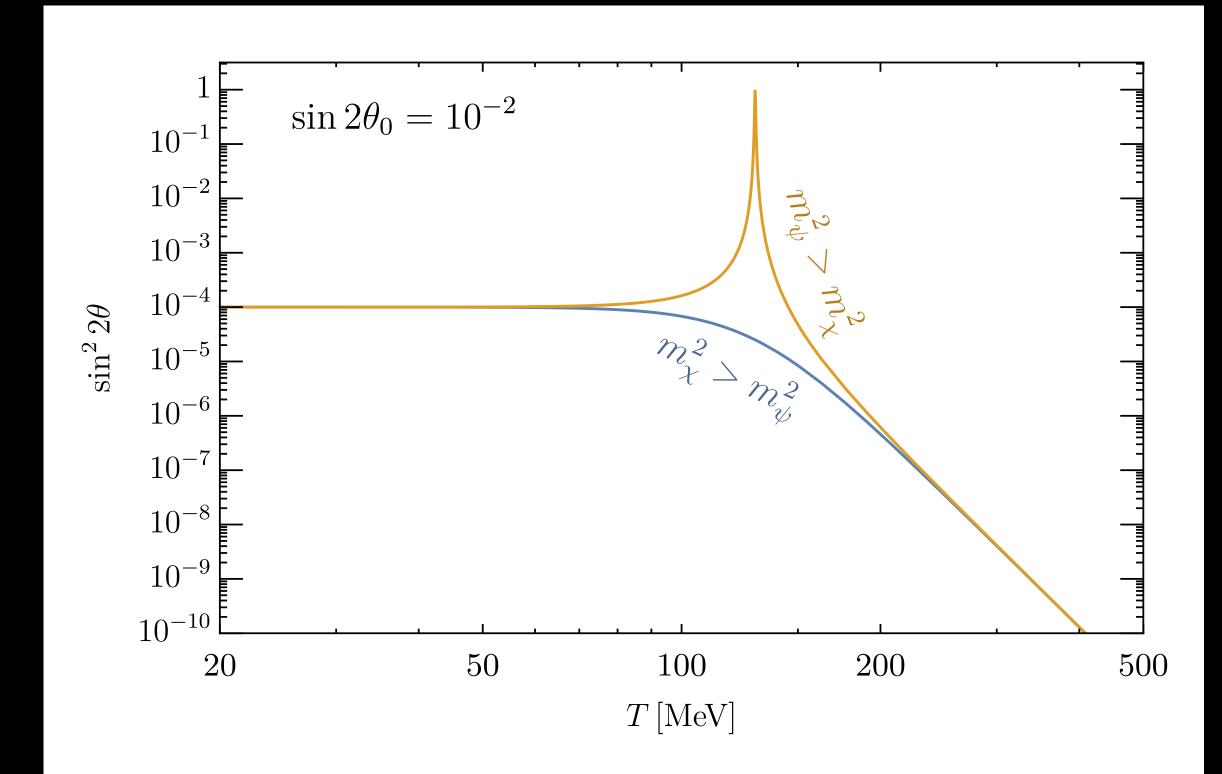
If
$$m_{\chi}^2 < m_{\psi}^2$$
: Resonance

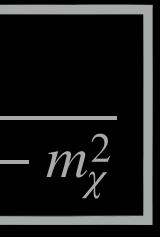
Both coherent (oscillations) and incoherent (scattering induced) production

 ψ may decay: account for freeze-out and decay

 $\tan 2\theta_m =$ $m_{\mu}^2 + \Delta$

$$\Delta m_T^2 \sim -\frac{T^4}{\Lambda^4} \frac{1}{T} (n_F + n_{\bar{F}})$$





DIM 8: $\mathscr{L}_{V}^{(6)} = \frac{1}{\Lambda^{4}} (\bar{\psi}\gamma^{\mu}F)(g_{\mu\nu}q^{2} + q_{\mu}q_{\nu})(\bar{F}\gamma^{\nu}\psi):$

If
$$m_{\chi}^2 < m_{\psi}^2$$
: Resonance

Both coherent (oscillations) and incoherent (scattering induced) production

 ψ may decay: account for freeze-out and decay

$$\tan 2\theta_m = \frac{2m_{\psi\chi}^2}{m_w^2 + \Delta m_T^2}$$

$$m_T^2 \sim -\frac{T^4}{\Lambda^4} \frac{1}{T} (n_F + n_{\bar{F}})$$

$$10^{-5} \qquad m_{\psi} = 1 \text{ TeV}$$

$$10^{-6} \qquad 10^{-7} \qquad m_{\psi} = 1 \text{ TeV}$$

$$10^{-8} \qquad 10^{-9} \qquad 10^{-4} \qquad 10^{-2} \qquad 1 \qquad 10^{2}$$

$$10^{-10} \qquad 10^{-12} \qquad 10^{-12} \qquad 1 \qquad 10^{2}$$

$$m_{\chi} [\text{GeV}] \qquad \text{PRELIMINAR}$$

TAKEAWAYS 1. OSCILLATIONS CAN BE AN EFFICIENT MECHANISM FOR DARK MATTER PRODUCTION

1. OSCILLATIONS CAN BE AN EFFICIENT MECHANISM FOR DARK MATTER PRODUCTION 2. ROMPS ARE PHENOMENOLOGICALLY DIFFERENT FROM TRADITIONAL DARK MATTER CANDIDATES

1. OSCILLATIONS CAN BE AN EFFICIENT MECHANISM FOR DARK MATTER PRODUCTION 2. ROMPS ARE PHENOMENOLOGICALLY DIFFERENT FROM TRADITIONAL DARK MATTER CANDIDATES

- Production sensitive to coherent effects!
- New temperature scale for production!
- Impact on DM momentum distribution!

1. OSCILLATIONS CAN BE AN EFFICIENT MECHANISM FOR DARK MATTER PRODUCTION 2. ROMPS ARE PHENOMENOLOGICALLY DIFFERENT FROM TRADITIONAL DARK MATTER CANDIDATES

3. THE ROMP FRAMEWORK CAN BE EASILY GENERALD TO WELL-ESTABLISHED DARK MATTER MODELS

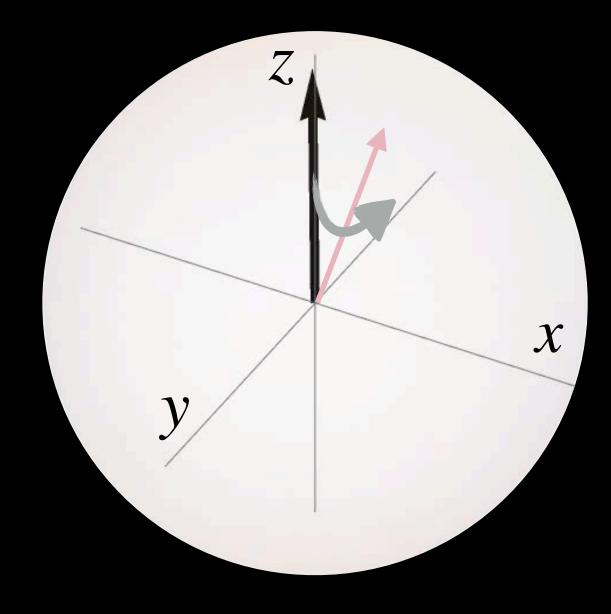
- Production sensitive to coherent effects!

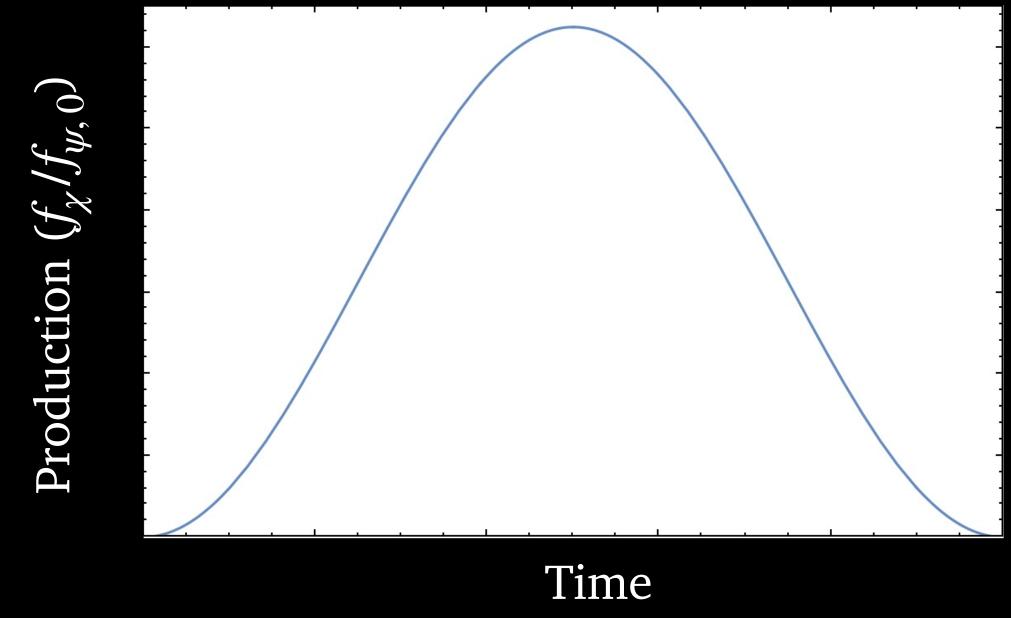
- New temperature scale for production!

- Impact on DM momentum distribution!

1. ESTABLISH THE PHENOMENOLOGY OF OTHER EFFECTIVE **OPERATORS SUCH AS SCALAR FOUR-FERMI OPERATORS** 2. WORK OUT CONSTRAINTS: A. STRUCTURE FORMATION **B. COLLIDER SEARCHES** C. INDIRECT SEARCHES FOR DECAYS

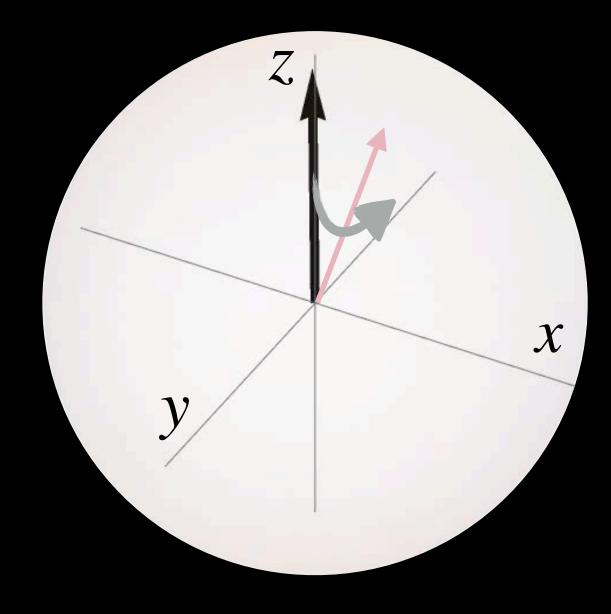
$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{V}_{\mathrm{vac}} \times \mathbf{P} - D\mathbf{P}_{1} + \dot{P}_{0}\hat{\mathbf{z}}$ IN A VACUUME

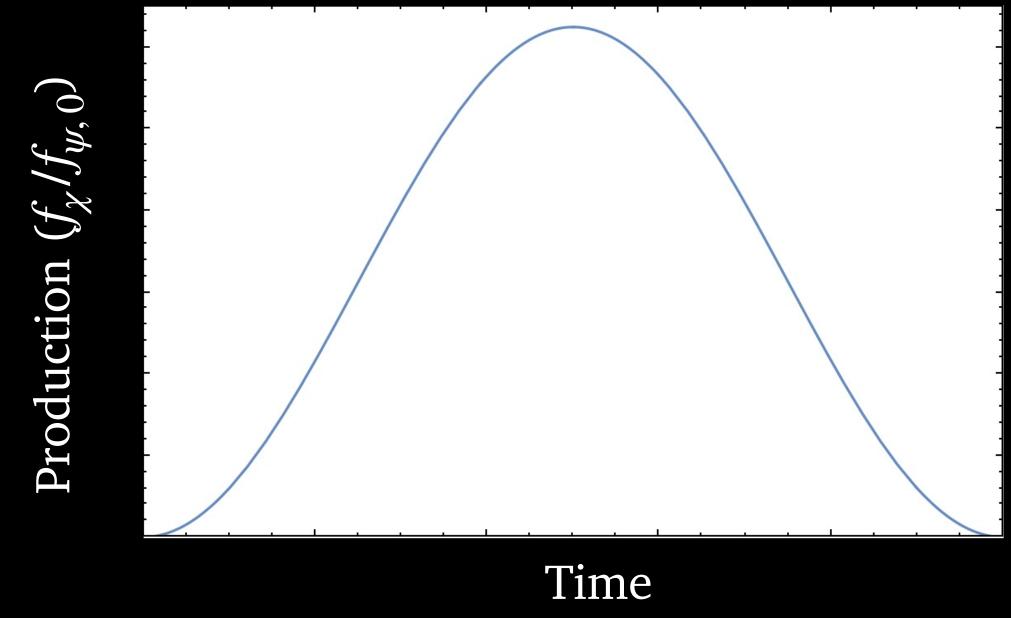




 $t/t_{\rm osc}$

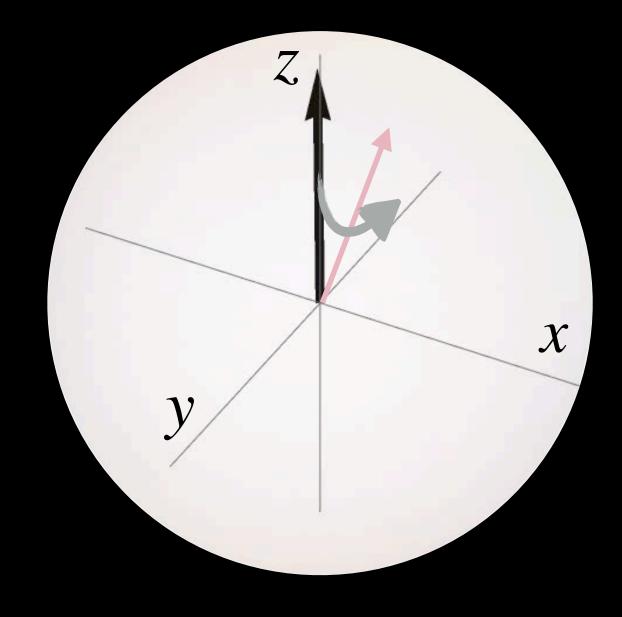
$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{V}_{\mathrm{vac}} \times \mathbf{P} - D\mathbf{P}_{1} + \dot{P}_{0}\hat{\mathbf{z}}$ IN A VACUUME



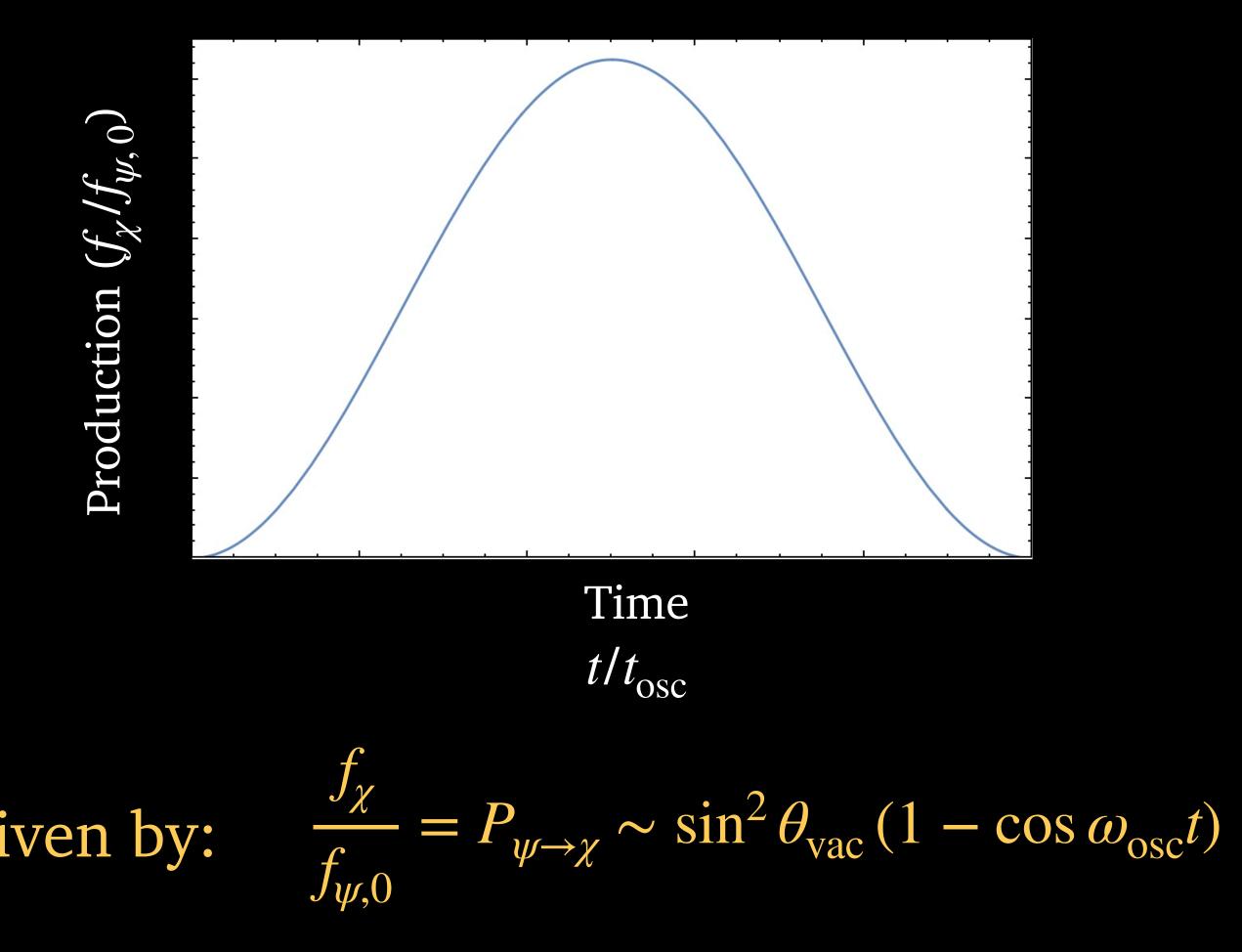


 $t/t_{\rm osc}$

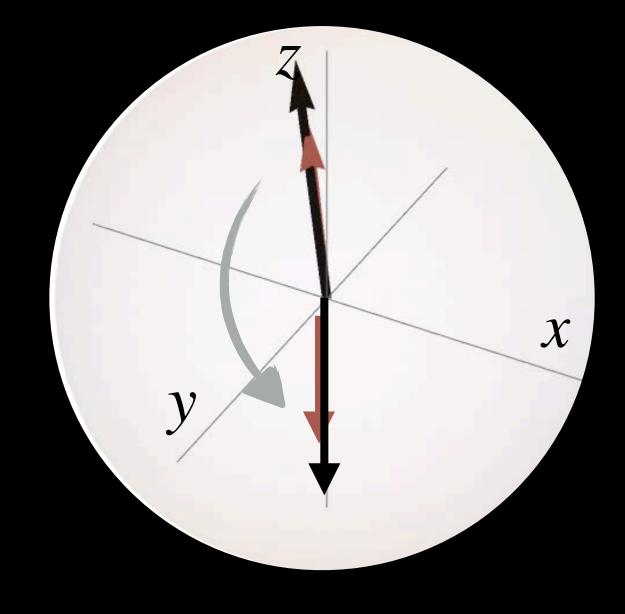
$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{V}_{\mathrm{vac}} \times \mathbf{P} - D\mathbf{P}_{1} + \dot{P}_{0}\hat{\mathbf{z}}$ IN A VACUUME



ψ oscillates into χ with a probability given by:



IN A MEDIUM, WITHOUT COLLISIONS: $\frac{dP}{dt} = V_{med} \times P - DP_1 + \dot{P}_0 \hat{z}$

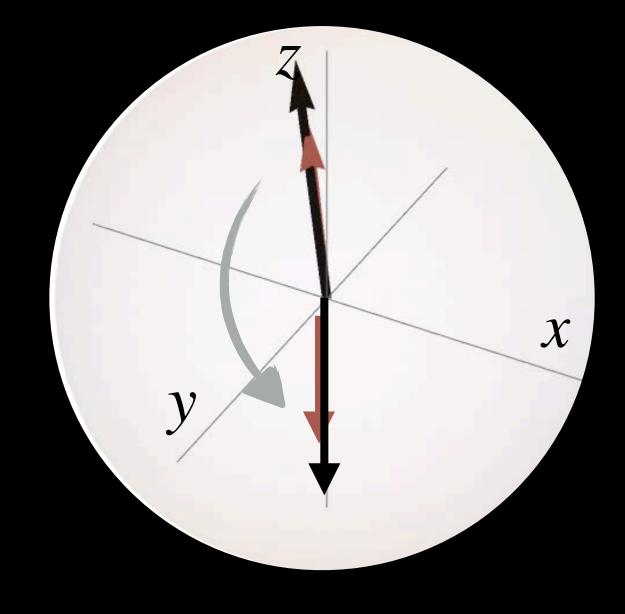


Mixing angle is a function of temperature, and may cross a resonance! If $\delta t_{res} > t_{osc}$ adiabatic conversion!

Time

 $t/t_{\rm osc}$

IN A MEDIUM, WITHOUT COLLISIONS: $\frac{dP}{dt} = V_{med} \times P - DP_1 + \dot{P}_0 \hat{z}$

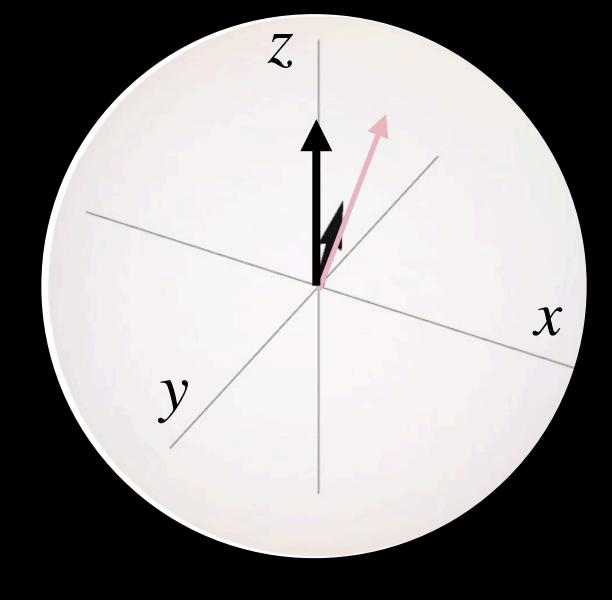


Mixing angle is a function of temperature, and may cross a resonance! If $\delta t_{res} > t_{osc}$ adiabatic conversion!

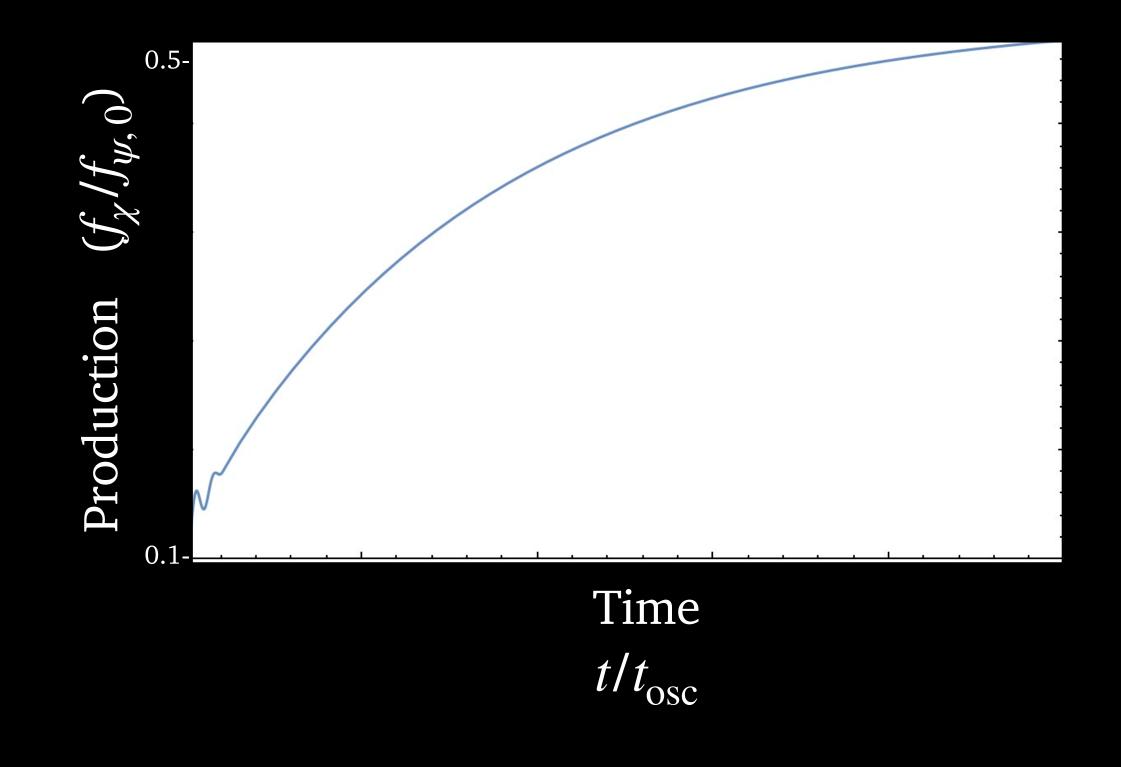
Time

 $t/t_{\rm osc}$

ADDING COLLSIONS:

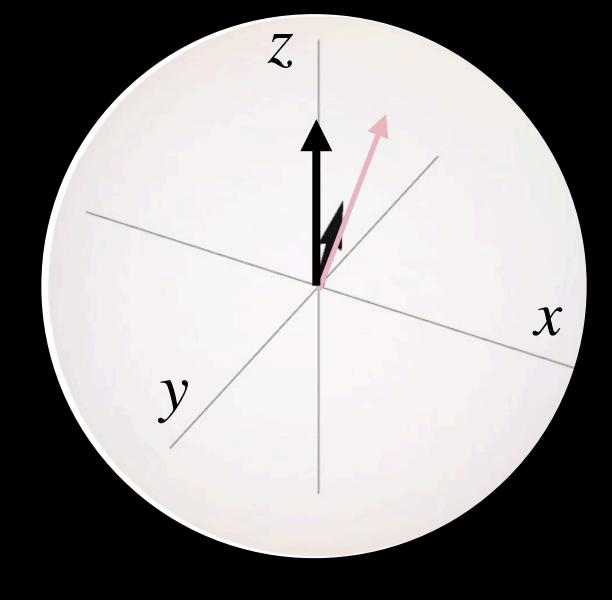


$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{V}_{\mathrm{vac}} \times \mathbf{P} - D \mathbf{P}_{\mathrm{T}} + \dot{P}_{0} \,\hat{\mathbf{z}}$

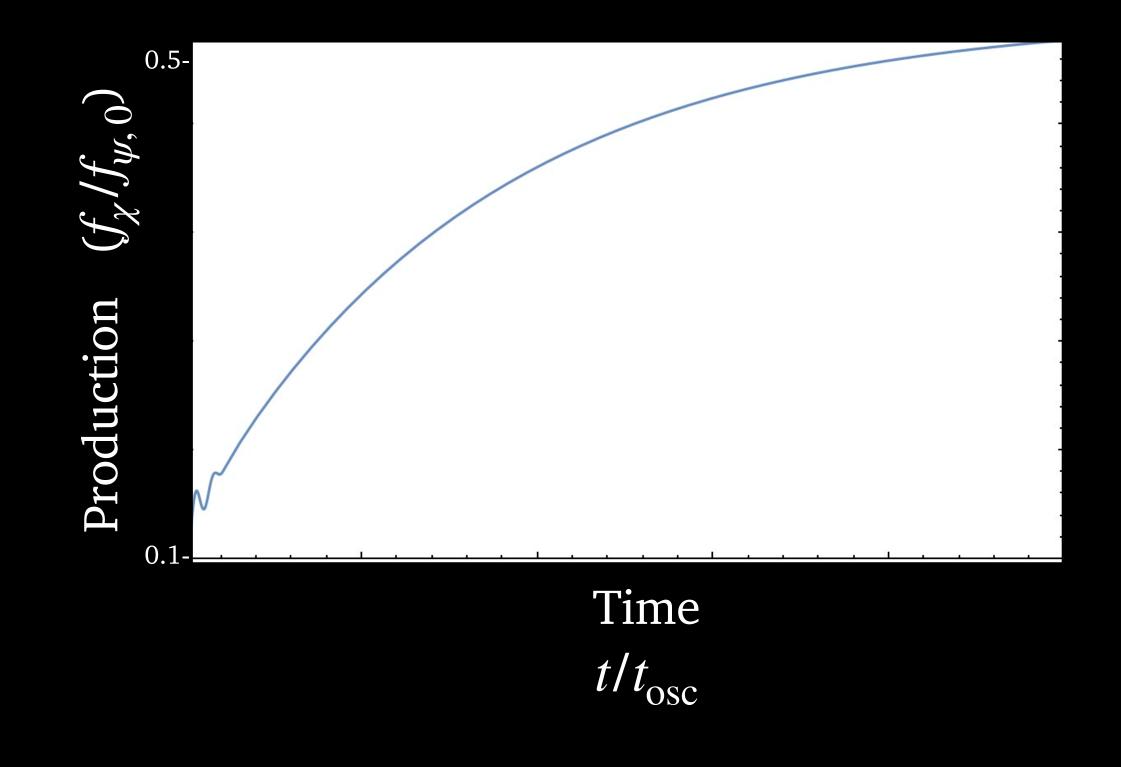


Collisions cause the two states to "decohere" and become equally populated

ADDING COLLSIONS:



$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \mathbf{V}_{\mathrm{vac}} \times \mathbf{P} - D \mathbf{P}_{\mathrm{T}} + \dot{P}_{0} \,\hat{\mathbf{z}}$



Collisions cause the two states to "decohere" and become equally populated

