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Direct dark matter searches with xenon
LZ primarily searches for 

anomalous nuclear recoils
caused by galactic dark matter particles

Xe

𝜒 𝜒

Xe

These dark matter particles 
might be WIMPs 

(but they don’t have to be)

● LXe TPCs lead the field
● ~1 keV thresholds w/ background discrimination and 

scalable target medium
● Excellent energy resolution enables further searches, 

e.g. 136Xe 0𝜈𝛽𝛽 and more
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The LZ Experiment
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LZ Detector Design:
NIMA, 953 163047 (2020)

7 tonne active liquid 
xenon time projection 
chamber (TPC)

Outer Detector neutron + µ veto

Water tank

Located in the Davis Campus on the 4850’ level of 
Sanford Underground Research Facility (SURF)

Xe Skin veto

Xe Skin & Outer Detector characterize 
and reject 𝛾 + neutron backgrounds!



Scott Haselschwardt

Liquid Xe TPC Operational Principle
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S1

S2

● Prompt scintillation (S1) & delayed 
ionization (S2) observables

● Top PMT array hit pattern gives (x,y)

● Time between S1 & S2 gives depth

LZ’s TPC:
● 1.5 m ⌀ x 1.5 m tall
● 7 tonne active liquid xenon
● Electrostatic grids establish E-fields 

for electron drift & extraction:
○ bottom, cathode, gate, anode

bottom grid

cathode grid

gate grid
anode grid
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Liquid Xe TPC Operational Principle
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bottom grid

cathode grid

S2/S1 ratio provides particle ID 
or “discrimination”

Electron Recoils
(β decays, 𝛾 rays, 𝜈-e-)

Nuclear Recoils
(WIMPs, neutrons)

● Prompt scintillation (S1) & delayed 
ionization (S2) observables

● Top PMT array hit pattern gives (x,y)

● Time between S1 & S2 gives depth

Primary dark matter search space:

S1 photons
lo
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Electron
Recoils

Nuclear
Recoils



Scott Haselschwardt

Important Changes Since LZ’s 1st Result (WS2022)
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Run
C/G/A

Voltage 
[kV]

Drift 
Field 

[V/cm]

Analysis
live time [d]

WS2022 -32/-4/+4 193 60

WS2024 -18/-4/+3.5 97 220

● Lowered extraction region 𝛥V by 
0.5 kV to reduce spurious emission

● Cathode lowered in response to light 
emission observed in Skin
○ ER/NR discrimination not affected

● LZ detector is performing very well!

bottom (-1.5 kV)
cathode (C)

gate (G)
anode (A)

Top PMTs

Bottom PMTs

● Following WS2022, carried out various 
campaigns related to detector optimization:
○ grid voltages
○ Xe circulation
○ trigger configuration
○ calibrations
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WIMP Search 2024 (WS2024)
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● Data from March ‘23 - March ‘24 - analysis here is a 220 live-day exposure
● Science data-taking periods have 95.2% up time
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Calibrations
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Electron recoils (background): 
● high stats (~156k evts) injection of 

radiolabeled methane containing                
3H (18.6 keV) & 14C (156 keV) 

● spatially homogeneous 𝛽 decays
● Others: injected 83mKr, 131mXe, activation 

lines
Nuclear recoils (signal): 
● high stats (~11k evts) run of DD generator: 

collimated 2.45 MeV neutrons 
● Also:  AmLi neutrons in calibration tubes

Above tune NEST*-based response model
● light gain: 0.112 ± 0.002 phd/photon
● charge gain: 34.0 ± 0.9 phd/electron
● single electron size: 44.5 phd

*See Greg Rischbieter’s NEST talk this afternoon

phd = photons detected

97 V/cm

**only 8k events of each shown for clarity

tritium 𝛽’s

DD neutrons

LZ Preliminary

99.9% discrimination of flat ER background 
below median 40 GeV (same as WS2022)
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Bias mitigation via ‘salt’
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● “Salting” - inject fake signal events randomly during 
science data collection

● Events manufactured using S1s & S2s from 
sequestered calibration data

● Number of injected events is bounded from above by 
WS2022 upper limit

● Events follow exponential+flat spectrum (exact 
parameters randomly generated, kept hidden)

o covers WIMP and higher-energy NR regions of 
interest 

● Identity of salt events revealed after analysis inputs are 
finalized for final inference

LZ Preliminary
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Background Model Overview
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● Dissolved 𝛽 emitters: 
○ 214Pb (222Rn), 212Pb (220Rn), 85Kr, 136Xe (𝛽𝛽)

● Dissolved EC decays (x-ray/Auger cascades): 
○ 127/125Xe from neutron calibration activation
○ 124Xe (double EC), 0.095% nat. abundance

● Instrumental: Accidental coincidences
● Solar 𝜈’s: 8B+hep (NR), pp+7Be (ER)
● Long-lived 𝛾 emitters in detector materials:

○ 238U chain, 232Th chain, 40K, 60Co
● Neutrons from spontaneous fission and (𝜶,n) in detector materials

WS2024

See Ann Wang’s talk on 
backgrounds this afternoon
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Controlling LXe Flow to Reduce Backgrounds 
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Fine control of TPC+LXe temperatures allow 
control of LXe flow pattern

Data in WS2024 acquired in two flow states:
1. High Mixing - turbulent flow, uniform 

distribution of Rn & injected sources
2. Low Mixing - laminar-like flow, creates 

convective cells 

In low mixing state, use 222Rn-218Po 
coincidences to map liquid flow to 
efficiently tag 214Pb 𝛽’s

LZ
Preliminary
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Active tagging of 214Pb

13

● “Radon tag” uses field & flow model to predict locations of charged and 
neutral 214Pb

● Reduces 214Pb to 1.8 ± 0.3 µBq/kg in untagged sample 
(compare to 3.9 ± 0.6 µBq/kg in total exposure)

● Tagged & untagged samples used in final inference
o no ‘loss of exposure’

0.3 tonne-yr 1.8 tonne-yrLZ Preliminary% of 
214Pb

% of 
Exposure

Tagged 60±4 15

Untagged 40±4 85
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Electron Capture (EC) Decay Backgrounds
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*Temples et al, Phys. Rev. D 104, 112001 (2021)

Single EC: 127,125Xe - NR calibration activation
Double EC: 124Xe - 0.095% nat. abundance 

X-ray+Auger from L-shell (5.2 keV) EC give 
field-dependent suppressed charge yield in 
comparison to 𝛽’s of the same energy

Single EC charge yield suppression measured in small 
chamber* and using LZ in-situ in both WS2022 & WS2024

**dedicated publication on these measurements in progress

Preliminary** WS2024 ratio: QL/Q𝛽 = 0.86 ± 0.01 
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Primary 124Xe signals in WIMP region are LM and LL capture @ 5.98 keV & 10 keV

in-situ rate measurement of half-life uses KK, KL, KM, KN capture peaks:
- expect 19.4 ± 3.9 events [7.1 (LM-shell) + 12.3 (LL-shell)]

Expect LL captures display further charge yield 
suppression due to increased ionization density 
relative to single-L capture
→ Background model allows 124Xe LL-capture 
suppression to vary:

L-shell capture 
suppression

Modeling 124Xe Double Electron Captures

2x L-shell 
ionization density

0.65 < QLL/Q𝛽 < 0.87

LZ Preliminary
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Primary 124Xe signals in WIMP region are LM and LL capture @ 5.98 keV & 10 keV

in-situ rate measurement of half-life uses KK, KL, KM, KN capture peaks:
- expect 19.4 ± 3.9 events [7.1 (LM-shell) + 12.3 (LL-shell)]

Expect LL captures display further charge yield 
suppression due to increased ionization density 
relative to single-L capture

Modeling 124Xe Double Electron Captures

QLL/Q𝛽 = 0.70 ± 0.04
Best fit to WS2024 data:

LZ Preliminary
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Accidental Coincidence Background
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Caused by pile-up of uncorrelated S1 and S2 pulses

LZ’s model is data driven:
● Rate derived from unphysical drift time (UDT) 

events & cut efficiencies assessed on 
manufactured accidental events

● Shape constructed by applying all analysis cuts 
to manufactured accidental events (combined 
isolated S1 & S2 waveforms)

Unphysical drift regionPhysical drift region

m
ax

 d
rif

t t
im

e

drift time

Expected counts: 2.8 ± 0.6 
- sys uncert dominated by differences in cut survival 

fractions between manufactured accidentals and UDTs

ER model

40 GeV 
WIMP

LZ Preliminary
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Data selection
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Skin/OD 
Coincidence Window: 

prompt (300 ns)
delayed (600 µs)

● Time exclusions remove periods of high-rate, detector 
instability, hold-off following large S2s (“e-trains”) 
- 86% live time retention

● S1- & S2-based cuts target pulse pathologies typical 
of accidental events

○ Impacts final signal acceptance
○ Quantified with calibration data sets (tritium, AmLi, DD)

● Fiducial volume cut: azimuthally & drift 
time-dependent fiducial volume chosen for <0.01 “wall” 
events: 5.5 ± 0.2 tonne mass

● Skin/OD veto anti-coincidence 

LZ Preliminary

LZ Preliminary
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WS2024 data set - 7 salt events in red
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● 8 salt events revealed - 7 of which 
pass all analysis cuts - consistent 
with expected efficiency

salted

LZ Preliminary

Total ER background
Accidentals
124Xe @ best-fit QLL/Q𝛽
40 GeV/c2 WIMP
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WS2024 final data set - salt removed
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LZ Preliminary

Total ER background
Accidentals
124Xe @ best-fit QLL/Q𝛽
40 GeV/c2 WIMP

● Likelihood inference region of interest:

○ 3 < S1c < 80 phd
○ S2 > 645 phd (14.5 electrons)*
○ S2c < 104.5 phd

● S2 threshold set above salted 8B & 
low-mass WIMP region

● 1220 events remain after unsalting

● 220 live days x 5.5 t = 3.3 tonne-yr
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WS2024 Final Dataset - all data & Rn-tagged set
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Total ER background
Accidentals
124Xe @ best-fit QLL/Q𝛽
40 GeV/c2 WIMP

Radon tagged (214Pb rich) sample 
does not contain leakage from 124Xe 

LZ Preliminary
3.3 tonne-yr 0.3 tonne-yr
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Breakdown of combined likelihood
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High 
Mixing

Radon Tag 
Inactive

Radon 
Tagged

Radon 
Untagged

Skin/OD 
Vetoed WS2022

0.6 0.6 0.3 1.8 n/a 0.9

1

Exposure
[tonne-yr]

2 3 4 5 6

● Likelihood combines six samples for final analysis

● WS2024: samples 1-4, totaling 3.3 tonne-year

● Skin/OD-tagged sample (5) provides direct constraint of neutron background rate
○ neutron tagging efficiency: 92 ± 1%

● WS2022 sample (6) unmodified 1st WIMP result → maximize sensitivity
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WS2024 Fit Results
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● Best fit of zero WIMPs at all tested masses (9 
GeV – 10 TeV)

● Excellent agreement w/ background-only model

p = 0.85

p = 0.70

LZ Preliminary
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WS2024-only Spin Independent Limit 
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● Frequentist, 2-sided profile likelihood 
ratio test statistic

● Upper limit is power constrained @ 
-1𝜎 sensitivity band per DM 
conventions: EPJC 81 907 (2021)

● Under fluctuation results from 
observed arrangement of accidental 
events in WIMP region

● WS2024-only min cross section:  
𝜎SI= 2.3 x 10-48 cm2 @ 43 GeV/c2

LZ Preliminary
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LZ Preliminary

WS2024+WS2022 Combined Spin Independent Limit 

● Frequentist, 2-sided profile likelihood 
ratio test statistic

● Upper limit is power constrained @ 
-1𝜎 sensitivity band per DM 
conventions: EPJC 81 907 (2021)

● Additional under fluctuation from 
combination with WS2022 

● Combined min cross section:       
𝜎SI= 2.2 x 10-48 cm2 @ 43 GeV/c2
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WS2024+WS2022 Combined Spin Dependent Limits 

Grey bands show theoretical uncertainties on SD form factors
Solid black show power constrained limits

LZ Preliminary LZ Preliminary
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Conclusions & Outlook
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● LZ is the world’s most sensitive WIMP direct detection experiment with 
combined total exposure of 4.2 tonne-year

● Demonstrated 60% reduction of primary ER background w/ flow-based tagging
○ First use of this technique for a dark matter result 

● First observation of suppressed charge yield from LL-shell captures of 124Xe

● LZ continues to take quality science data with ‘salt’ events injected for active 
bias mitigation - data collection continues to 2028

● Many physics searches on the horizon: 8B CE𝜈NS, low-mass WIMPs, ER-based 
searches, neutrinoless double beta decay, and more*!

*See Yongheng Xu’s talk on LZ’s 
millicharged particle search this afternoon
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Thank you!
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Thanks to our sponsors and 
38 participating institutions!

U.S. Department of Energy 
Office of Science
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Additional slides



Scott Haselschwardt

Livetime removal for data quality
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LZ Preliminary
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10 TeV/c2 WIMP 
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LZ Preliminary
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Pie Chart Plots
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WS2024 data - spatial distributions
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LZ Preliminary

LZ Preliminary
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Reconstructed Energy in WIMP Region
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p = 0.28

LZ Preliminary
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2D goodness-of-fit
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LZ Preliminary

p = 0.19
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Likelihood Breakdown
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models+data from 1st LZ result [PRL 131, 041002 (2023)]

events in high mixing circulation state, contains 
residual ER calibration events

events in times when Rn-Po flow mapping not reliable 
(circ. stoppages, etc)

events in Rn veto periods/regions -  rich in 214Pb!

complement of above - depleted in 214Pb & rich in signal

events w/coincident activity in Skin & OD vetoes - 
provides direct constraint on neutron background rate 
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Neutrons & Outer Detector Veto
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● Measured tagging efficiency for AmLi neutrons: 89 ± 3%
● Predicted tagging efficiency from tuned simulation of 

background (SF & (𝛼,n)) neutrons: 92 ± 1%
○ Accidental tag rate of 3%
○ Used to directly constrain neutron rate in final inference

● Delayed veto cut extends to 600 µs w/ 200 
& 300 keV OD & skin thresholds to include 
n-capture on Gd & H
○ capture on Gd gives ~8 MeV in the form of 

4-5 gammas on avg

○ capture on H gives single, 2.2 MeV 
gammas
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124Xe LL-shell compared to dark matter spectra
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WIMP spectra normalized to 
LZ’s 4.2 tonne-yr median 3𝜎 
discovery potential:
- 9 evts @ 40 GeV
- 11 evts @ 1000 GeV

LZ Preliminary



Scott Haselschwardt

Accidentals: model & unphysical drift sideband comparisons
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Comparing manufactured 
accidental events and 
unphysical drift 
accidentals

Good agreement before 
application of S1- and 
S2-based cuts

LZ Preliminary
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Checks of Accidental Bkg Impact on Limit
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1. Remove accidental rate constraint: best fit drops 2.6 → 1.4
2. Remove constraint & outlier event: best fit drops 1.4 → 0

a. Outlier event holds model up, over subtracting in the WIMP region
3. Adding fake events - props limit back up

→ under-fluctuation of accidental events in the WIMP region

1 2 3

LZ Preliminary LZ Preliminary LZ Preliminary
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LZ’s first dark matter search result

40 GeV 
WIMP

ER Backgrounds

LZ First Results, PRL 131, 041002 (2023)

60 days of data
5.5 tonnes Xe
= 0.9 tonne-yr
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LZ First Results,
PRL 131, 041002 (2023)

60 days of data
5.5 tonnes Xe
= 0.9 tonne-yr

LZ’s first dark matter search result
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2211.10726

NEST Model of ER leakage vs Drift Field


