

New Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

Scott Haselschwardt

Lawrence Berkeley National Lab* on behalf of the LZ Collaboration

TeVPA 2024 - Chicago August 26, 2024

*Now at University of Michigan haselsco@umich.edu

The LZ (LUX-ZEPLIN) Collaboration

https://lz.lbl.gov

Black Hills State University Brookhaven National Laboratory Brown University Center for Underground Physics Edinburgh University Fermi National Accelerator Lab. Imperial College London King's College London Lawrence Berkeley National Lab. Lawrence Livermore National Lab. LIP Coimbra Northwestern University Pennsylvania State University **Royal Holloway University of London SLAC National Accelerator Lab.** South Dakota School of Mines & Tech South Dakota Science & Technology Authority STFC Rutherford Appleton Lab. **Texas A&M University** University of Albany, SUNY **University of Alabama University of Bristol University College London** University of California Berkeley **University of California Davis University of California Los Angeles** University of California Santa Barbara University of Liverpool University of Maryland **University of Massachusetts, Amherst University of Michigan** University of Oxford **University of Rochester University of Sheffield** University of Sydney University of Texas at Austin University of Wisconsin, Madison **University of Zürich**

US Europe Asia

Oceania

250 scientists, engineers, & technical staff **38 institutions**

Facilities Council

Science and

Technology

Swiss National **Science Foundation**

h Institute for Basic Science Basic Science

Direct dark matter searches with xenon

LZ primarily searches for anomalous nuclear recoils caused by galactic dark matter particles

These dark matter particles *might be* **WIMPs** (but they don't have to be)

- LXe TPCs lead the field
- ~1 keV thresholds w/ background discrimination and scalable target medium
- Excellent energy resolution enables further searches, e.g. ¹³⁶Xe $0\nu\beta\beta$ and more

The LZ Experiment

Located in the **Davis Campus** on the 4850' level of **Sanford Underground Research Facility (SURF)**

Xe Skin & Outer Detector characterize and reject γ + *neutron* backgrounds!

7 tonne active liquid xenon time projection chamber (TPC)

Outer Detector neutron + µ veto

Liquid Xe TPC Operational Principle

- Prompt scintillation (S1) & delayed ionization (S2) observables
- Top PMT array hit pattern gives (x,y)
- Time between S1 & S2 gives depth

LZ's TPC:

- 1.5 m Ø x 1.5 m tall
- 7 tonne active liquid xenon
- Electrostatic grids establish E-fields for electron drift & extraction:
 - \circ bottom, cathode, gate, anode

Liquid Xe TPC Operational Principle

- Prompt scintillation (S1) & delayed ionization (S2) observables
- Top PMT array hit pattern gives (x,y)
- Time between S1 & S2 gives depth

S2/S1 ratio provides **particle ID** or **"discrimination"**

Primary dark matter search space:

Important Changes Since LZ's 1st Result (WS2022)

- Following WS2022, carried out various campaigns related to detector optimization:
 - grid voltages
 - Xe circulation
 - trigger configuration
 - calibrations
- Lowered extraction region △V by 0.5 kV to reduce spurious emission
- Cathode lowered in response to light emission observed in Skin
 ER/NR discrimination not affected
- LZ detector is performing very well!

Run	C/G/A Voltage [kV]	Drift Field [V/cm]	Analysis live time [d]
WS2022	-32/-4/+4	193	60
WS2024	-18/-4/+3.5	97	220

WIMP Search 2024 (WS2024)

- Data from March '23 March '24 analysis here is a **220 live-day** exposure
- Science data-taking periods have 95.2% up time

Calibrations

Electron recoils (background):

- high stats (~156k evts) injection of radiolabeled methane containing ³H (18.6 keV) & ¹⁴C (156 keV)
- spatially homogeneous β decays
- Others: injected ^{83m}Kr, ^{131m}Xe, activation lines

Nuclear recoils (signal):

- high stats (~11k evts) run of DD generator: collimated 2.45 MeV neutrons
- Also: AmLi neutrons in calibration tubes

Above tune NEST*-based response model

- light gain: 0.112 ± 0.002 phd/photon
- charge gain: 34.0 ± 0.9 phd/electron
- single electron size: 44.5 phd

99.9% discrimination of flat ER background below median 40 GeV (same as WS2022)

Scott Haselschwardt

Bias mitigation via 'salt'

- "Salting" inject fake signal events randomly during science data collection
- Events manufactured using S1s & S2s from sequestered calibration data
- Number of injected events is bounded from above by WS2022 upper limit
- Events follow exponential+flat spectrum (exact parameters randomly generated, kept hidden)
 - covers WIMP and higher-energy NR regions of interest
- Identity of salt events revealed after analysis inputs are finalized for final inference

Background Model Overview

- Dissolved β emitters:
 - **²¹⁴Pb** (²²²Rn), ²¹²Pb (²²⁰Rn), ⁸⁵Kr, ¹³⁶Xe ($\beta\beta$)
- Dissolved EC decays (x-ray/Auger cascades):
 - o ^{127/125}Xe from neutron calibration activation
 - ¹²⁴Xe (double EC), 0.095% nat. abundance
- Instrumental: Accidental coincidences
- Solar v's: ⁸B+*hep* (NR), pp+⁷Be (ER)
- Long-lived γ emitters in detector materials:
 - \circ ²³⁸U chain, ²³²Th chain, ⁴⁰K, ⁶⁰Co
- Neutrons from spontaneous fission and (α, n) in detector materials

See Ann Wang's talk on backgrounds this afternoon

Controlling LXe Flow to Reduce Backgrounds

222_{Rn}

3.82 d

.59 MeV

218_{Po} 3.10 min

> 6.11 N α

214_{Pb}

26.7 min

Fine control of TPC+LXe temperatures allow control of LXe flow pattern

Data in WS2024 acquired in two flow states:

- 1. **High Mixing** turbulent flow, uniform distribution of Rn & injected sources
- 2. Low Mixing laminar-like flow, creates convective cells

In low mixing state, use 222 Rn- 218 Po coincidences to map liquid flow to efficiently tag 214 Pb β 's

17

Active tagging of ²¹⁴Pb

- "Radon tag" uses field & flow model to predict locations of charged and neutral ²¹⁴Pb
- Reduces ²¹⁴Pb to **1.8 ± 0.3 µBq/kg in untagged sample** (compare to $3.9 \pm 0.6 \mu Bq/kg$ in total exposure)
- Tagged & untagged samples used in final inference • Data — ${}^{40}K$
 - no 'loss of exposure' \bigcirc

Radon tagged

Scott Haselschwardt

Electron Capture (EC) Decay Backgrounds

Single EC: ^{127,125}Xe - NR calibration activation Double EC: ¹²⁴Xe - 0.095% nat. abundance

X-ray+Auger from L-shell (5.2 keV) EC give field-dependent **suppressed charge yield** in comparison to β 's of the same energy

*Temples et al, Phys. Rev. D 104, 112001 (2021)

Single EC charge yield suppression measured in small chamber* and using LZ *in-situ* in both WS2022 & WS2024

Preliminary** WS2024 ratio: $Q_L/Q_\beta = 0.86 \pm 0.01$

**dedicated publication on these measurements in progress

14

Modeling ¹²⁴Xe <u>Double</u> Electron Captures

Primary ¹²⁴Xe signals in WIMP region are LM and LL capture @ 5.98 keV & 10 keV

in-situ rate measurement of half-life uses KK, KL, KM, KN capture peaks:

- expect 19.4 ± 3.9 events [7.1 (LM-shell) + 12.3 (LL-shell)]

Expect LL captures display further charge yield suppression due to increased ionization density relative to single-L capture

 \rightarrow Background model allows ¹²⁴Xe LL-capture suppression to vary:

Modeling ¹²⁴Xe <u>Double</u> Electron Captures

Primary ¹²⁴Xe signals in WIMP region are LM and LL capture @ 5.98 keV & 10 keV

in-situ rate measurement of half-life uses KK, KL, KM, KN capture peaks:

- expect 19.4 ± 3.9 events [7.1 (LM-shell) + 12.3 (LL-shell)]

Expect LL captures display further charge yield suppression due to increased ionization density relative to single-L capture

Best fit to WS2024 data:

 $Q_{LL}/Q_{\beta} = 0.70 \pm 0.04$

Accidental Coincidence Background

Caused by pile-up of uncorrelated S1 and S2 pulses

LZ's model is *data driven*:

- **Rate** derived from unphysical drift time (UDT) events & cut efficiencies assessed on manufactured accidental events
- **Shape** constructed by applying all analysis cuts to manufactured accidental events (combined isolated S1 & S2 waveforms)

Expected counts: 2.8 ± 0.6

 sys uncert dominated by differences in cut survival fractions between manufactured accidentals and UDTs

Data selection

- Time exclusions remove periods of high-rate, detector instability, hold-off following large S2s ("e-trains")
 86% live time retention
- S1- & S2-based cuts target pulse pathologies typical of accidental events
 - Impacts final signal acceptance
 - Quantified with calibration data sets (tritium, AmLi, DD)
- Fiducial volume cut: azimuthally & drift time-dependent fiducial volume chosen for <0.01 "wall" events: 5.5 ± 0.2 tonne mass
- Skin/OD veto anti-coincidence

Skin/OD Coincidence Window: prompt (300 ns) delayed (600 µs)

WS2024 data set - 7 salt events in red

8 salt events revealed - 7 of which pass all analysis cuts - consistent with expected efficiency

WS2024 final data set - salt removed

- Likelihood inference region of interest:
 - 3 < S1c < 80 phd
 - S2 > 645 phd (14.5 electrons)*
 - S2c < $10^{4.5}$ phd
- S2 threshold set above salted ⁸B & low-mass WIMP region
- 1220 events remain after unsalting
- 220 live days x 5.5 t = 3.3 tonne-yr

WS2024 Final Dataset - all data & Rn-tagged set

Radon tagged (²¹⁴Pb rich) sample <u>does not</u> contain leakage from ¹²⁴Xe Total ER background Accidentals ¹²⁴Xe @ best-fit Q_{LL}/Q_β 40 GeV/c² WIMP

Breakdown of combined likelihood

	1	2	3	4	5	6
	High Mixing	Radon Tag Inactive	Radon Tagged	Radon Untagged	Skin/OD Vetoed	WS2022
Exposure [tonne-yr]	0.6	0.6	0.3	1.8	n/a	0.9

- Likelihood combines **six samples** for final analysis
- WS2024: samples 1-4, totaling 3.3 tonne-year
- Skin/OD-tagged sample (5) provides direct constraint of neutron background rate
 neutron tagging efficiency: 92 ± 1%
- WS2022 sample (6) unmodified 1st WIMP result \rightarrow maximize sensitivity

WS2024 Fit Results

9		
Source	Pre-fit Constraint	Fit Result
214 Pb β s	743 ± 88	733 ± 34
212 Pb + 218 Po β s	62.7 ± 7.5	63.7 ± 7.4
85 Kr + 39 Ar β s + det. γ s	162 ± 22	161 ± 21
Tritium+ ¹⁴ C β s	58.3 ± 3.3	59.7 ± 3.3
Solar ν ER	102 ± 6	102 ± 6
127 Xe + 125 Xe EC	3.2 ± 0.6	2.7 ± 0.6
124 Xe DEC	19.4 ± 3.9	21.4 ± 3.6
136 Xe $2 uetaeta$	55.6 ± 8.3	55.8 ± 8.2
$^{8}\mathrm{B}+hep~\nu~\mathrm{NR}$	0.06 ± 0.01	0.06 ± 0.01
Atm. ν NR	0.12 ± 0.02	0.12 ± 0.02
Accidentals	2.8 ± 0.6	2.6 ± 0.6
Detector neutrons	_	$0.0^{+0.2}$
$40 \ { m GeV}/c^2 \ { m WIMP}$	_	$0.0^{+0.6}$
Total	1210 ± 91	1203 ± 42

- Best fit of zero WIMPs at all tested masses GeV – 10 TeV)
- Excellent agreement w/ background-only model

Scott Haselschwardt

WS2024-only Spin Independent Limit

- Frequentist, 2-sided profile likelihood ratio test statistic
- Upper limit is power constrained @ -1σ sensitivity band per DM conventions: EPJC 81 907 (2021)
- Under fluctuation results from observed arrangement of accidental events in WIMP region
- WS2024-only min cross section: σ_{SI} = 2.3 x 10⁻⁴⁸ cm² @ 43 GeV/c²

WS2024+WS2022 Combined Spin Independent Limit

- Frequentist, 2-sided profile likelihood ratio test statistic
- Upper limit is power constrained @ -1σ sensitivity band per DM conventions: EPJC 81 907 (2021)
- Additional under fluctuation from combination with WS2022
- Combined min cross section: σ_{SI} = 2.2 x 10⁻⁴⁸ cm² @ 43 GeV/c²

WS2024+WS2022 Combined Spin Dependent Limits

Grey bands show theoretical uncertainties on SD form factors Solid black show power constrained limits

Conclusions & Outlook

- LZ is the **world's most sensitive WIMP direct detection experiment** with combined **total exposure of 4.2 tonne-year**
- Demonstrated 60% reduction of primary ER background w/ flow-based tagging
 First use of this technique for a dark matter result
- **First observation** of suppressed charge yield from LL-shell captures of ¹²⁴Xe
- LZ continues to take quality science data with 'salt' events injected for active bias mitigation data collection continues to 2028
- Many physics searches on the horizon: ⁸B CEvNS, low-mass WIMPs, ER-based searches, neutrinoless double beta decay, and more*!

Thank you!

Thanks to our sponsors and 38 participating institutions!

U.S. Department of Energy Office of Science

Additional slides

Livetime removal for data quality

10 TeV/c² WIMP

Pie Chart Plots

WS2024 data - spatial distributions

Reconstructed Energy in WIMP Region

2D goodness-of-fit

Likelihood Breakdown

 $\mathcal{L}_{\text{Combined}} =$ $\mathcal{L}_{\mathrm{WS2022}}$ $imes \mathcal{L}_{\mathrm{High\,mix}}$ $\times \mathcal{L}_{Rn \, veto \, inactive}$ $\times \mathcal{L}_{\mathrm{Rn\,tagged}}$ $\times \mathcal{L}_{\text{Not Rn tagged}}$ $\times \mathcal{L}_{\text{Skin+OD tagged}}$

models+data from 1st LZ result [*PRL* 131, 041002 (2023)]

events in high mixing circulation state, contains residual ER calibration events

events in times when Rn-Po flow mapping not reliable (circ. stoppages, etc)

events in Rn veto periods/regions - rich in ²¹⁴Pb!

complement of above - depleted in ²¹⁴Pb & rich in signal

events w/coincident activity in Skin & OD vetoes provides direct constraint on neutron background rate

Neutrons & Outer Detector Veto

- Delayed veto cut extends to 600 µs w/ 200 & 300 keV OD & skin thresholds to include n-capture on Gd & H
 - capture on Gd gives ~8 MeV in the form of 4-5 gammas on avg
 - capture on H gives single, 2.2 MeV gammas

- Measured tagging efficiency for AmLi neutrons: 89 ± 3%
- Predicted tagging efficiency from tuned simulation of background (SF & (α,n)) neutrons: 92 ± 1%
 - Accidental tag rate of 3%
 - Used to directly constrain neutron rate in final inference

¹²⁴Xe LL-shell compared to dark matter spectra

WIMP spectra normalized to LZ's 4.2 tonne-yr median 3σ discovery potential:

- 9 evts @ 40 GeV
- 11 evts @ 1000 GeV

Accidentals: model & unphysical drift sideband comparisons

Comparing manufactured accidental events and unphysical drift accidentals

Good agreement before application of S1- and S2-based cuts

Checks of Accidental Bkg Impact on Limit

- 1. Remove accidental rate constraint: best fit drops $2.6 \rightarrow 1.4$
- 2. Remove constraint & outlier event: best fit drops $1.4 \rightarrow 0$
 - a. Outlier event holds model up, over subtracting in the WIMP region
- 3. Adding fake events props limit back up
 - \rightarrow under-fluctuation of accidental events in the WIMP region

LZ's first dark matter search result

LZ's first dark matter search result

NEST Model of ER leakage vs Drift Field

