

Large-Scale Environments in BL Lac objects: Connecting Gamma-Ray Absorption Features to Neutrino Production

Luca Foffano, M. Cerruti, V. Vittorini

TeVPA2024 conference – Chicago, USA - 26/08/2024

Overview

Environmental Structures in Active Galactic Nuclei

Environment around jets of active galactic nuclei formed by medium- to large-scale structures, e.g.:

- Broad-line region (BLR)
- Narrow-line region (NLR)

Adapted from Urry&Padovani+1995

Environment around jets of active galactic nuclei formed by medium- to large-scale structures, e.g.:

- Broad-line region (BLR)
- Narrow-line region (NLR)
- Further / intermediate regions in specific types of AGNs, depending on matter state and physical conditions: e.g. Intermediate (ILR) or extended narrow-line region, ENLR

Zoology of AGNs is very complex: correlated with their evolution history

Adapted from Urry&Padovani+1995

AC

Environmental Structures in Active Galactic Nuclei

Adapted from Urry&Padovani+1995

How do we detect large-scale environments in AGNs?

Standard methods to detect large-scale environmental structures in AGNs are based on their **optical spectra**

Luca Foffano

Large-Scale Environmental Structures in BL Lac Objects

In **BL Lac objects**, the relativistic jet points directly to the observer.

The non-thermal continuum of the relativistic jet overwhelms any thermal emissions emitted from large-scale structures

X standard methods can not be applied

✓ an indirect method may do the work!

Which large-scale structures are present in BL Lac objects?

Do the large-scale structures survive to the evolution in BL Lac objects?

Luca Foffano

 $\begin{array}{c} \textbf{\$-\$ interactions} \\ \rightarrow \textbf{absorption features} \\ \text{in the gamma-ray spectrum of BL Lac objects} \end{array}$

Gamma rays of the jet may interact with optical-UV seed photon field via γ-γ pair production, producing **absorption features** in the γ-ray spectrum of the BL Lac object.

 $\gamma_{\text{gamma}} + \gamma_{\text{seed}} \rightarrow e^+ + e^-$

LF, Vittorini, Tavani+2022, ApJ, 926, 95

Theory vs real data

LF, Vittorini, Tavani+2022, ApJ, 926, 95

Theoretical absorption feature

The properties of the absorption feature can be directly connected with the properties of the seed photon field \rightarrow indirectly connected to the large-scale structure itself

Theory vs real data

How many?

A systematic analysis of gamma-ray spectra of BL Lac objects is being performed

Luca Foffano

TeVPA2024 - 26/08/2024

Phase 2

*x***-***x* interactions **p-y** interactions \rightarrow absorption features \rightarrow neutrinos! in the gamma-ray spectrum of BL Lac objects Seed hoto field V_{LE} AHE 8.0 ٩ Ê <u>رائع</u> LF+2022 0,0 00 ______ (i)

Protons in the jet may interact with these seed photon field via p-γ photomeson production, eventually producing **neutrinos**.

Gamma rays of the jet may interact with optical-UV seed photon field via γ-γ pair production, producing **absorption features** in the γ-ray spectrum of the BL Lac object.

 $\gamma_{\text{gamma}} + \gamma_{\text{seed}} \rightarrow e^+ + e^-$

%-% interactions → **absorption features** in the gamma-ray spectrum of BL Lac objects

<mark>Phase 2</mark>

Studying the correlation between the gamma-ray absorption features and the corresponding neutrino flux

Direct approach

LF+2024, in preparation

- 1) Assume the **absorption feature** in the gamma-ray spectrum of the BL Lac object is due to the $\gamma\gamma$ interaction between the relativistic jet and the NLR
- 2) The **absorption factor** may correlate with the **efficiency** of neutrino production from py reactions following:

$$\tau_{\gamma\gamma}(\epsilon_{\gamma}^{c}) \simeq 10 \left(\frac{f_{p\gamma}(\epsilon_{p})}{0.01} \right)$$

The stronger the absorption due to $\gamma\gamma$ interaction, the higher the p γ efficiency

Key goals:

- Link the neutrino flux directly to the absorption feature in the gamma-ray spectrum of a BL Lac object
- Run simulations scanning over the interacting region, the relativistic jet, and the AGN properties
- Find the best conditions where neutrino production is significative

Conclusions

Context: Standard methods struggle to identify large-scale structures in BL Lac objects due to the dominant radiation from relativistic jets

This work:

- Phase 1: New method to provide indirect estimations on the large-scale environments studying absorption features in the gamma-ray spectrum of the BL Lac object, produced by the **yy** interaction between the relativistic jet and the environmental photon fields.
- Phase 2: Explore how these interactions also trigger py processes, potentially leading to production of neutrinos from BL Lac objects

Thank you!

