Search for neutrino signals from the Galactic Plane and **Cygnus Bubble based on LHAASO y-ray observations**

Wenlian Li¹, Tian-Qi Huang^{2,3}, Donglian Xu^{1,4}, Huihai He^{2,3,5}

TDLI, SJTU¹, IHEP, CAS², TIANFU CRRC³, SPA, SJTU⁴, UCAS⁵

TeVPA 2024, Chicago, IL August 28, 2024

Outline

1. Introduction

• LHAASO observation of Galactic plane & Cygnus Bubble

2. Detectors & Datasets

- IceCube publicly available 7 years of track data with the full detector
- LHAASO diffuse Galactic γ -ray flux templates

3. Analyses & Results

- Template searches
- Scan searches

4. Summary & Outlook

Introduction

- Origin of cosmic rays?
- Cosmic rays interact with the interstellar medium (ISM) should produce pions (π^0/π^{\pm}) which • decay into γ -rays and neutrinos.

Figure credit: Wikipedia

IHAASO Observation of Diffuse Galactic γ-ray Emission (DGE)

- \blacktriangleright LHAASO measured diffuse γ -rays from the Galactic plane with energies from sub-TeV to 1 PeV
 - ✓ Conducted in two regions: the inner region $(15^{\circ} < 1 < 125^{\circ}, |b| < 5^{\circ})$ and the outer region $(125^{\circ} < 1 < 235^{\circ}, |b| < 5^{\circ})$
 - ✓ All known point-like and extended sources are masked in the analysis

LHAASO Collaboration, Phys.Rev.Lett. 131 (2023) 15, 15

Datasets and Method

- > LHAASO data: diffuse Galactic γ -ray flux map and significance map of KM2A
 - Use the γ -ray flux map ($\Delta l=2^\circ$, $\Delta b=1^\circ$) observed by LHAASO-KM2A as the weighting for neutrino emission
 - Apply significance cuts $(0.5\sigma, 1\sigma, 1.5\sigma, 2\sigma)$ to the flux map
- > IceCube data: publicly released 7 years of track events with the IceCube full detector
 - IC86-I (2011-2012), IC86-II (2012-2018)
 - Experimental data events, instrument response functions, and detector uptime

> Method: time-integrated template analysis

$$egin{aligned} L(n_s,\gamma) &= \prod_{i=1}^N \left(rac{n_s}{N}S_i(\mathbf{x}_i,\sigma_i,E_i;\gamma) + ilde{D}_i(sin\delta_i,E_i) - rac{n_s}{N} ilde{S}_i(sin\delta_i,E_i)
ight) \ TS &= 2 ext{ln}igg[rac{L(\hat{n}_s)}{L(n_s=0)}igg] = 2\sum_i^N ext{ln}igg[rac{n_s}{N}igg(rac{S_i}{\widetilde{D}_i} - rac{\widetilde{S}_i}{\widetilde{D}_i}igg) + 1igg] \end{aligned}$$

> Interpreting results: neutrino flux/upper limits, hadronic fraction constraints

Templates/Signal PDFs

- From top to bottom: (A) LHAASO γ -ray flux map (0.5 σ), (B) π^0 (with mask), (C) gas (with mask), (D) gas
- Each template was convolved with the IceCube detector acceptance and then smeared with Gaussian distributions representing a typical uncertainty of 0.5°. The color scale is in arbitrary units (a.u.)

 $S_i^{\text{spat}}(\mathbf{x}_i | \sigma_i, \gamma) = (T_{\text{spat}}(\mathbf{x}) \times M_{\text{acc}}(\mathbf{x}, \gamma) * Gaussian_{2D}(\sigma_i))(\mathbf{x}_i)$

 \succ γ -ray flux templates

Spatial Template	\widehat{n}_s	Pretrial p-value (σ_{pre})	Best-fit flux $\pm 1\sigma$	Upper Limit $oldsymbol{\phi}_{90\%}$	$\phi_{90\%}/\phi_{ u}$
γ -ray flux map (0.5 σ)	311.4	0.029 (1.9 <i>σ</i>)	$1.78^{+0.95}_{-0.94} imes 10^{-14}$	3.00×10^{-14}	2.9
γ -ray flux map (1.0 σ)	278.8	0.036 (1.8 <i>σ</i>)	$1.56^{+0.88}_{-0.87} \times 10^{-14}$	2.68×10^{-14}	2.9
γ -ray flux map (1.5 σ)	244.5	0.040 (1.8 <i>σ</i>)	$1.34^{+0.78}_{-0.77} \times 10^{-14}$	2.35×10^{-14}	3.0
γ -ray flux map (2.0 σ)	182.5	0.064 (1.5 <i>σ</i>)	$0.98^{+0.66}_{-0.65} \times 10^{-14}$	1.82×10^{-14}	3.2

Flux at $E_{\nu}=25$ TeV in units of $TeV^{-1}cm^{-2}s^{-1}$

- The neutrino spectral shape γ is fixed, assuming it follows the KM2A spectral index above 5 TeV (with $E_{\gamma} = 2E_{\nu}$) and the WCDA spectral index below it, while only fits \hat{n}_s in the likelihood maximization
- **D** The most significant result is obtained using the γ -ray flux map with >0.5 σ detection, at 1.9 σ pre-trials
- The 90% C.L. upper limits are approximately three times higher than the expected neutrino flux assuming that all diffuse γ -rays originate from hadronic interactions

The deviation from the measurements of IceCube at lower energy range is probably due to differences in energy spectra, neutrino data samples, and sky regions

> Other templates

✓ Uniform, gas, π^0 , KRA_{γ}^5 , and KRA_{γ}^{50} model templates

Flux is given at $E_{\nu}=25$ TeV in units of $TeV^{-1}cm^{-2}s^{-1}$

Spatial Template	γ	\widehat{n}_s	Pretrial p-value (σ_{pre})	Best-fit flux $\pm 1\sigma$	Upper Limit $oldsymbol{\phi}_{90\%}$
Uniform (with mask)	γlhaaso	208.9	0.15 (1.0σ)	$1.21^{+1.16}_{-1.16} \times 10^{-14}$	2.71×10^{-14}
Gas (with mask)	γ _{lhaaso}	181.2	0.16 (1.0σ)	1.03×10^{-14}	2.36×10^{-14}
π^0 (with mask)	$E^{-2.70}$	198.0	0.14 (1.1 <i>σ</i>)	$1.45^{+1.34}_{-1.33} \times 10^{-14}$	3.17×10^{-14}
KRA_{γ}^{5} (with mask)	γ_{model}^5	145.4	0.15 (1.0 <i>σ</i>)	$0.20 \stackrel{+0.20}{_{-0.20}} \times MF$	$0.46 \times MF$
KRA_{γ}^{50} (with mask)	γ_{model}^{50}	113.8	0.19 (0 .9 <i>σ</i>)	$0.14 \times MF$	$0.35 \times MF$
Uniform $(15^{\circ} < l < 235^{\circ}, b < 5^{\circ})$	γlhaaso	336.8	0.069 (1.5σ)	$1.92^{+1.30}_{-1.29} \times 10^{-14}$	3.58×10^{-14}
Gas $(15^{\circ} < l < 235^{\circ}, b < 5^{\circ})$	γlhaaso	276.5	0.067 (1.5σ)	$1.62^{+1.09}_{-1.08} \times 10^{-14}$	3.01×10^{-14}
π^0 (all-sky)	$E^{-2.70}$	606.3	$0.062 (1.5\sigma)$	$7.02^{+4.61}_{-4.58} \times 10^{-14}$	1.29×10^{-13}
KRA_{γ}^{5} (all-sky)	γ_{model}^5	209.5	0.15 (1.0σ)	$0.61 \stackrel{+0.61}{_{-0.60}} \times MF$	$1.39 \times MF$
KRA_{γ}^{50} (all-sky)	γ_{model}^{50}	155.8	0.19 (0.9 <i>σ</i>)	$0.42 \times MF$	$1.05 \times MF$

Flux in units of the model flux (MF)

The results obtained using the γ -ray flux maps are more significant than those obtained using the gas, uniform, and model templates.

Galactic Plane Scan Results

> Neutrino pretrial p-value $(-log_{10}p)$ sky map

A X-ray binary, XTE J1946+274 (l = 63.21°, b = 1.40°), is located 0.6° away from the inner hotspot This source is found with a pretrial p-value of 2.6×10^{-3} (2.8 σ) with $\hat{n}_s = 36.1$ and $\hat{\gamma} = 2.98$

Galactic Plane Scan Results

> Neutrino pretrial p-value sky map and masked region in LHAASO's analysis

> Neutrino excess (\hat{n}_s) map and gas contour

A cluster of neutrino warm spots near 138°<1<142°, |b|<2.5° is associated with a large gas clump. However, the cluster is not significant

Neutrinos from the Cygnus region?

LHAASO Observation of Cygnus Bubble

- \succ LHAASO detected an enormous γ -ray bubble (at least 6°) in the direction of the star-forming region Cygnus X
 - ✓ The SED extends up to 2 PeV \rightarrow indicating the presence of Super PeVatron(s)
 - ✓ Hot spots associated with massive molecular clouds \rightarrow indicating a hadronic origin of photons in the Bubble
- \triangleright Conduct template searches using the γ -ray flux map as the neutrino emission template
 - ✓ Composed of the MC, HI gas, LHAASO J2027+4119, and LHAASO J2031+4057

LHAASO Collaboration, Sci.Bull. 69 (2024) 4, 449-457

> Cygnus Bubble γ -ray flux templates (6°)

 $[\]phi_{90\%}$ at 5 TeV in units of $TeV^{-1}cm^{-2}s^{-1}$

> **Results** of other templates

Spatial Template	\widehat{n}_s	$p_{pre}\left(\sigma_{pre} ight)$	UL ($\phi_{90\%}$)	
MC (6°)	31.8	0.225	5.32×10^{-13}	
HI (6°)	27.3	0.291	5.75×10^{-13}	
Hydrogen (6°)	32.2	0.237	5.58×10^{-13}	
Uniform (6°)	41.6	0.215	6.68×10^{-13}	
LHAASO J2027+4119 ($\sigma = 2.28^{\circ}$)	22.9	0.278	4.61×10^{-13}	
LHAASO J2031+4057 ($\sigma = 0.33^{\circ}$)	34.0	$0.007 (2.4\sigma)$	3.16×10 ⁻¹³	

 $\phi_{90\%}$ at E_{ν} =5 TeV in units of $TeV^{-1}cm^{-2}s^{-1}$

The most significant is Gaussian template for LHAASO J2031+4057 with $\sigma = 0.33^{\circ}$, at 2.4 σ pre-trials

Results (significance) for various template radii (0.7°, 1.2°, 6°, and 10°)

- The molecular cloud (MC) template (r =1.2°) yields the most significant result, at 2.8σ pre-trials
- At larger radii of 6° and 10°, the neutrino excess of γ -ray flux template at 7 TeV is more significant <18 >

Or Cygnus Bubble Scan Results

$$S^{spat}(\mathbf{x}_i|\mathbf{x}_s,\sigma_s,\sigma_i) = \frac{1}{2\pi(\sigma_i^2 + \sigma_s^2)} e^{-\frac{|\mathbf{x}_s - \mathbf{x}_i|^2}{2(\sigma_i^2 + \sigma_s^2)}}$$

> Hotspot

Name	R A [°]	Dec [°]	Ext σ_s [°]	Ŷ	\widehat{n}_s	$p_{pre}\left(\sigma_{pre} ight)$	p_{post}
Hotspot (entire scan region)	303.35	43.75	0.3	2.3	22.2	$2.2 \times 10^{-3} (2.9\sigma)$	0.84
Hotspot (central 2° region)	308.25	40.45	0.3	4.0	31.7	$6.3 \times 10^{-3} (2.5\sigma)$	0.18

> Neutrino pretrial p-value sky map and γ -ray significance map contour

The neutrino hotspot in the bubble center is spatially associated with the γ -ray hotspot below 20 TeV ($^{<19>}$

Summary & Outlook

> Summary

- Conducted template and scan searches of the Galactic Plane and Cygnus Bubble using 7 years of public IceCube track data with the full detector
- □ Neutrinos from the Galactic Plane:
- ✓ In the scan , the hottest spot is found at $1=63.57^{\circ}$ and $b=0.93^{\circ}$ with a pre- (post-) significance of 4.6σ (1.8 σ)
- ✓ In the template search, the most significant result is found using the LHAASO diffuse γ -ray flux map with >0.5 σ detection, yielding a pretrial significance of 1.9 σ
- Neutrinos from the Cygnus Bubble:
- ✓ The MC template in 1.2° radius yields the most significant result, with a pretrial significance of 2.8σ
- \square Our findings are consistent with the hadronic origin of the γ -ray emission from the diffuse Galactic Plane and Cygnus Bubble, as the 90ULs exceed the theoretically predicted ν flux assuming hadronic interactions

> Outlook

- **Δ** More templates can be investigated in the future (e.g., LHAASO-WCDA diffuse γ-ray flux templates, GC)
- Combined analyses using more data, including both tracks and cascades observed by current and future neutrino telescopes, will elucidate the origin and propagation of cosmic rays in the Galaxy

Thanks for listening!

Diffuse Galactic γ-ray Emission (DGE)

• DGE Observation & Model

DGE has been measured by Fermi, Milagro, HESS, ARGO-YBJ, Tibet ASγ, HAWC, and recently by LHAASO from sub-GeV to PeV.

> This flux could be modeled using CR and γ -ray observations:

- *Fermi*-LAT π^0 , **KRA-** γ model...
- Diffuse Galactic γ -ray emission is dominated by π^0 -decay flux

Tibet ASy collaboration, PRL 126, 141101 (2021)

Previous Template Searches (Galactic Plane)

Previous Searches (Cygnus Region)

• Cygnus Bubble Scan Results

• The neutrino significance (excess) map lacks a clear correlation with the γ -ray significance map (gas and γ -ray flux distribution)