

Applying SBI to the Spectral and Spatial Information from the GCE

Katharena Christy University of Hawaiʻi w/ Eric. J. Baxter & Jason Kumar [2402.04549]

Galactic Center Excess

- excess of photons O(GeV) from Galactic
 Center seen by Fermi LAT
 - (Goodenough, Hooper [0910.2998],
 [1010.2752]; Abazajian, Kaplinghat
 [1207.6047]; Fermi [1511.02938])

- 15 year mystery
 - $\circ \quad \textbf{XX} \rightarrow \text{SM SM (m}_{\text{DM}} \sim \text{O(50 GeV))?}$
 - unresolved millisecond pulsars?

Hooper, LCTP SASDM (2023)

morphology & spectrum

- approximately spherically symmetric about GC
 - may more closely follow galactic bulge

- spectrum consistent with DM and MSPs
 - uniform in ~20° radius

spatial and spectral information

- many approaches "factorize" spatial and spectral information, losing correlations between them
 - NPTFit Mishra-Sharma, et al. [1612.03173]
- others employ template fitting that does fit both in tandem
 - SkyFACT Storm, et al. [1705.04065]
 - many template parameters O(10⁵)
 - Poisson likelihoods
- GCE may arise from few bright (but unresolved) MSPs
 - \circ spectrum varies from pulsar to pulsar \rightarrow non-Poisson energy fluctuations between pixels
 - difficult to fit
- goal: to see if joint spatial and spectral analysis improves posteriors

simulation based inference

- energy dependent likelihood becomes computationally intractable with non-Poisson sources
 - probability of observing photons involves many combinatoric sums over sources
 - easy to generate mock data from a model
- important for MSPs
 - a single pulsar produces several observed photons
 - results in non-Poisson counts fluctuations from pixel to pixel
- estimate the likelihood/posterior by simulating data over parameter space
 - rejection algorithms: ABC
 - neural algorithms: normalizing flows, SNPE, SNLE, SNRE
- goal: use a neural algorithm on non-Poisson data

Neural Posterior Estimation (NPE)

- sbi python package (Tejero-Cantero, et al. [2007.09114]): algorithm based on (Greenberg, et al. [1905.07488])
- amortized analysis
 - non-amortized (SNPE): multiple rounds of training based on observed data
- Processing
 - \circ ~10⁵ simulations per network, requiring ~50 CPU hours
 - ~5 CPU hours to train (more for SNPE)
- results robust to varying training sample size

mock data analysis

- our source distribution models are exact, by definition
 - isotropic, galactic diffuse, Fermi bubbles, DM annihilation, MSPs
- clarifies how much the joint use of spatial and spectral information helps
- focus on case where spatial and spectral information alone from DM vs.
 MSPs are nearly degenerate
 - DM annihilation spectrum is average pulsar spectrum
 - pulsar spatial distribution goes as $\rho_{DM}^{2}(r)$
 - also use disk pulsars, but not important after masking galactic plane
- mock analysis doesn't tell us about mismodelling effects, or if our models match Fermi data

simulating data

- individual photon directions and energies are generated
- Steps
 - stochastically draw photons from high-resolution (N_{side} 2⁹, 10³ E bins) pixelated flux maps (DM annihilation, diffuse and isotropic backgrounds)
 - place MSPs in 3d space from density function
 - assign luminosities from luminosity function
 - \circ $\,$ draw number of photons and spectral parameters for each MSP $\,$
 - draw corresponding photon energies from each MSP spectrum
 - perturb photon energies and directions by the Fermi IRF
 - compress data to a lower resolution pixelated counts map
- having individual photons makes applying energy dependent PSF trivial

use fit of 61 Fermi pulsars to power law
 ×exp. (Cholis, et al., [1407.5583])

- use fit of 61 Fermi pulsars to power law
 ×exp. (Cholis, et al., [1407.5583])
- estimate parameter distribution from

fits using Gaussian KDE

- use fit of 61 Fermi pulsars to power law ×exp. (Cholis, et al., [1407.5583])
- estimate parameter distribution from fits using Gaussian KDE

- use fit of 61 Fermi pulsars to power law
 ×exp. (Cholis, et al., [1407.5583])
- estimate parameter distribution from fits using Gaussian KDE
- luminosity function: broken power law (Lee, et al. [1506.05124])
- distribution: gNFW² (**y** = 1.2)
- GCE produced by ~650 pulsars

dark matter model

- spectrum
 - equal to MSP mean (minimum spectral info)

• distribution: $gNFW^2$ ($\gamma = 1.2$)

back/foreground models

- galactic diffuse, isotropic, and Fermi bubbles
- diffuse anisotropic: Model O
 (Buschmann, et al. [2002.12373])
- isotropic: Fermi-LAT model
 - (https://fermi.gsfc.nasa.gov/ssc/data/access /lat/BackgroundModels.html)
- Fermi bubbles
 - spatial distribution = NPTFit
 - spectrum: Su, et al. [1005.5480]

summary statistic

• ROI

- within 10° of GC, |b|> 2°
- energy: 2 –100 GeV
- photons binned into 280 pixels, 10 log-spaced energy bins
- data compressed to 3 summary statistics
 - energy+direction: energy-dependent histogram of photon counts per pixel
 - direction: histogram of photon counts per pixel
 - energy: counts per energy bin

discussion

- can discriminate origin of GCE using energy information only, even though DM spectrum is the same as average MSP spectrum
 - \circ varying MSP spectrum \rightarrow NP fluctuations in photon count per energy bin
- directional information alone (clumpiness of CPD) also provides discriminating power, consistent with previous work
- but using energy+direction jointly provides significant improvement in parameter constraints
- we analyzed 100 mock data samples from same true model
 - **50% DM, 50% MSP**
 - mean reconstructed parameters biased, but bias small compared to 68% credible interval of single 1D posterior

future work

- mock analysis assumes correctly modelled source distributions
 - NP CPD analysis more complicated if sources are mismodelled
 - difficult to distinguish NP fluctuation of a correctly modelled source from a Poisson fluctuation of an incorrectly modelled source
 - use of joint spatial and spectral information can potentially be more robust
- next step is to do a mock analysis with mismodelled background
- after that, analysis of actual Fermi-LAT data
- general-purpose photon generation tool/ SBI analysis
- apply methodology to diffuse gamma ray background(DGRB)
 - sources are diffuse galactic emission, SFG, blazars, mAGN, dark matter(?)

mahalo!

backup slides

alternative pulsar model

• much more Poisson (degenerate with DM)

DM spectrum from $b\overline{b}$

- DM mass allowed to vary
 - able to reconstruct all three parameters
 - pulsar spectrum most similar to 30-50 GeV DM