The 100-year endeavor for detecting the highest energy cosmic rays

Toshihiro Fujii toshi@omu.ac.jp Osaka Metropolitan University (OMU) Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP) TeVPA 2024, August 26 2024

© Osaka Metropolitan University/Kyoto University L-INSIGHT7Ryuunosuke Takesh

What are cosmic rays?

Energetic particles in the universe

- Discovered by V.F. Hess (1912), Nobel Prize Ş in Physics (1936)
- Proton(90%), Helium(8%), electron and heavier nuclei

V. F. Hess, Phys. Z. 13, 1804 (1912) 5350 m

W. Kolhörster, Phys. Z. 14, 1153 (1913) 9300 m

How to detect extremely infrequent UHECRs?

Surface detector array

Fluorescence detector

© Osaka Metropolitan University/Kyoto University/Ryuunosuke Takeshige

Extensive air showers

Discovery of extensive air shower

Development of coincidence method within 0.4 millisecond (B. Rossi, 1931)

Discovered coincidence Ş signals of distant detectors with 150 m spacing at 3450 m (P. Auger, 1939)

K.H. Kampert, A.A. Watson, Eur. Phys. J. H 37, 359–412 (2012)

Particle shower at 3027 m (W.B. Fretter, 1949)

مى بىرى بىرى ئىلىيى بىرى . ئىرى بىرى بىرى بىرى بىرى بىرى بىرى بىرى	an a		5.7
	AL		
		/	
			, F
		1000	4
Nr.			
the second of	13 Carta		≤ 0
\mathbb{Z}			
AN CAR			
		V THAT AS	
Marken of the second		1 1 1 1 2 1	
N MARTIN	1		

The beginning of 100 EeV (10²⁰ eV) detection

First detection of ~100 EeV at Volcano Ranch Array (1963)

J. Linsley, "Evidence for a Primary Cosmic-Ray Particle with Energy 10²⁰ eV". *Phys. Rev. Lett.* 10 (4 Feb. 1963), 146–148

2.7K cosmic microwave backgrounds (CMB) by Penzias and Wilson (1965)

A.A. Penzias and R.W. Wilson, "A Measurement of Excess Antenna Temperature at 4080 Mc/s", Astrophys. J. Lett. 142: 419–421 (1965)

Prediction of Greisen, Zatsepin and Kuzmin (GZK) Cutoff (1966)

 $\gamma_{\rm CMB} \to \Delta^+ \to p + \pi^0$

K. Greisen, "End to the cosmic ray spectrum?" Phys. Rev. Lett. 16 (1966), 748–750 G.T. Zatsepin and V.A. Kuzmin, "Upper limit of the spectrum of cosmic rays". JETP Lett. 4 (1966), 78–80

How to detect extremely infrequent UHECRs?

Surface detector array

© Osaka Metropolitan University/Kyoto University/Ryuunosuke Takeshige

Extensive air showers

Fluorescence detector

History of fluorescence detector

Proposed by K. Suga and M. Oda (1958), also by Greisen and Chudakov at the same time

:研究紀要 第8卷第2号

0-1 (探索システム)

によってTOKYO-1の作業は19 トした。その設計の諸パラメータは

第8図 TOKYO-1の設置写真

参考文献:大気の蛍光観測による宇宙線実験の始まり棚橋五郎

京天文台(当時東京大学付属)堂平観天佛 JAFS, TOKYO-1 (標高870m)に東京方面に背を向けて仰角3959) 設置して観測を始めた。トリガー条件は、各PM T出力を夜光ノイズの8倍以上で選び、24本のP 1重同時条件で行った。68年12月か

First detection by Fresnel lens and 55

5×10¹⁸ eV, 680 g/cm² analyzed by B. Dawson, arXiv:1112.5686 (2011)

The Universe's most energetic particle

Fly's Eye (Utah, USA) Construction started from 1976, after a confirmation of fluorescence signal at Volcano **Ranch Array**

The highest energy cosmic ray so far, 15th October, 1991 320 ± 38 (stat.) ± 85 (syst.) EeV, "Oh-My-God" particle

Start the High Resolution Fly's Eye (HiRes-1) from 1994.

0.0 0.4 0.8 1.2 x direction cosine

Observed X_{max} is consistent with hadron primary, unlikely with gamma-ray

 $X_{\rm max} = 815 \pm 60 \, {\rm g/cm^2}$

Latest UHECR observatories

Google Earth

- **Telescope Array Experiment (TA)**
 - Utah, USA
- 2008~, 700 km²
 - $\stackrel{\texttt{\&}}{\to} \text{TA} \times 4 \rightarrow 3000 \text{ km}^2$
- Pierre Auger Observatory (Auger)
 - Malargüe, Argentina
 - 2004~, **3000 km**²
 - AugerPrime upgrade scintillator + small PMT + radio + buried muon detector + high speed electronics

10

Telescope Array experiment @Utah, USA

2021 May 27, 04:35:56 AM Detection of "Amaterasu" particle

© Toshihiro Fujii, L-INSIGHT, Kyoto University and Ryuunosuke Takeshige

Telescope Array Collaboration, Science 382, 903 (2023)

20210527	001716.635727	5.737	-8.895	9.98	22.48	168.53	0.587	0.00
20210527	005753.524148	7.988	1.748	10.51	38.09	155.29	0.277	0.00
20210527	012459.385602	-5.703	-9.588	6.59	17.86	204.01	0.165	0.00
20210527	020622.327294	-4.091	-12.485	11.16	33.44	297.15	0.228	0.00
20210527	022215.026443	-5.554	-4.402	4.53	40.69	257.32	0.324	0.00
20210527	022953.053133	4.534	0.286	4.36	25.51	93.45	0.676	0.00
20210527	032730.128559	6.769	8.087	3.70	42.25	213.29	0.608	0.00
20210527	034324.408578	4.286	11.504	2.36	54.83	277.55	0.373	0.00
20210527	044710.753089	-2.208	6.068	6.57	23.24	213.93	0.200	0.00
20210527	045739.611334	3.358	-5.096	6.19	27.52	51.49	0.386	0.00
20210527	052456.616001	-8.802	-0.043	3.74	47.33	265.97	0.400	0.00
20210527	053039.195422	7.042	-0.775	5.07	51.50	253.88	0.338	0.00
20210527	060309.528577	7.681	-2.878	5.22	41.97	354.02	0.307	0.00
20210527	063750 . 948203	-9.893	-10.150	10.05	10.90	198.69	0.386	0.00
20210527	064513.310301	-0.567	-9.565	2.95	46.76	237.80	0.199	0.00
20210527	065111.717578	-2.120	2.494	5.77	40.51	246.21	0.142	0.00
20210527	072300.050046	5.441	12.539	2.87	48.35	327.27	0.538	0.00
20210527	073937.403223	8.820	-15.204	7.60	40.87	96.83	0.436	0.00
20210527	075907.626302	-0.188	-13.335	3.59	43.43	123.62	0.390	0.00
20210527	081936.883244	7.531	12.513	7.21	28.55	63.75	0.371	0.00
20210527	085544.355178	-3.884	3.239	9.03	41.35	233.83	0.416	0.00
20210527	103556.474337	-9.471	1.904	529.53	38.62	206.80	0.044	0.00
20210527	103819.341498	4.773	-16.531	3.90	52.08	21.79	0.250	0.00
20210527	122815.858965	-2.615	8.767	4.69	35.65	357.84	0.289	0.00
20210527	124726.186961	-4.969	-16.217	9.31	22.84	86.24	0.550	0.00
20210527	130030.400026	-6.704	-16.486	11.12	19.46	57.86	0.292	0.00
20210527	131652.649468	-2.707	2.834	8.41	30.48	159.44	0.317	0.00
20210527	131931.788147	3.315	-18.699	7.52	38.62	277.76	0.506	0.00
20210527	135753.703832	-11.351	-6.900	6.24	25.40	113.13	0.446	0.00
20210527	143154.113642	-6.137	-17.021	10.56	34.18	200.72	0.205	0.00
20210527	150126 752502	0 205	2 007	2 52	10 01	76 01	0 111	0 00

2.06 3.14 1.46 2.84 1.35 1.04 1.20 1.31 1.38 1.34 1.60 3.25 1.60 1.97 1.13 1.70 1.22 2.32 1.19 1.53 3.03 243.61 2.39 1.22 1.93 2.24 1.85 2.05 1.42 2.77 1 07

Arrival direction of Amaterasu particle

0.5

0

Ş

E = 244 ± 29 (stat.) +51,-76 (syst.) EeV **Unexpectedly, come from the Local Void** No promising astronomical source candidates

Telescope Array Collaboration, Science 382, 903 (2023)

- **Binary neutron star merger** (Farrar, arXiv:2405.12004)
- **Ultra-heavy** composition like Te or Pt (Zhang+, arXiv:2405.17409)

Ankle (E > 10 EeV)

Cutoff (E > 50 EeV)

Beyond-cutoff (E > 100 EeV)

Energy (eV) A. Coleman et al., Astropart. Phys. 149, 102819 (2023)

Mass composition

Anisotropy of UHECRs (>10 EeV)

Northern TA ApJL, 898:L28 (2020) *E*_{TA}> 8.8 EeV

analys Ō

()

- Significant (> 5σ) large-scale anisotropy observed by Pierre Auger Observatory
- 125 degrees away from Galactic Center
 - Supporting the extragalactic origins

Ankle (*E*_{TA}>10 EeV, *E*_{Auger}> 8.86 EeV)

Converted to

Galactic coordinates

T. Fujii, PoS (ICRC2021) 402 (2021)

"Deciphering" magnetic fields

Synchrotron emission at 30 GHz

IMAGINE project (arXiv:1805.02496)

Cutoff (*E*_{TA}>52.3 EeV *E*_{Auger}>40 EeV), ~**1000 events**

- - No excess from M87 of Virgo cluster, dubbed "Virgo scandal"
- Isotropic distributions of UHECRs than our (optimistic) expectation Ş

T. Fujii et al., PoS (ICRC2021) 291 (2020)

Intriguing intermediate-scale anisotropies (~20 degrees) such as hot/warm spots

★ : Starburst galaxies ◆ : Active galactic nuclei >100 EeV of TA 15-years and Auger 17-years

No obvious clustering appeared

Summary and future perspective

23

Art of cosmic ray (Hiroshi Nakajima, Japan) Amaterasu particle ↓ Muon tomography

UHECRs as a high energy pioneer

Pros

- The most energetic particle in the Universe, ~3.2x10²⁰ eV (=320 EeV) ĕ
 - $\sqrt[9]{}$ $\sqrt{s} \sim 800$ TeV (ref. $\sqrt{s} \sim 14$ TeV at the Earth's largest accelerator)
 - to make a light bulb flash during only 1 second Ş
- **Possible directional correlations** toward nearby powerful astronomical objects as next Ş generation astronomy
- Pioneering search for new physics at an unprecedented energies for accelerators Ş

Cons

- Extremely infrequent: 1 particle/km²/century (>50 EeV) Ş
 - Challenging to detect UHECRs
- Manage a lot of systematic uncertainties

Greisen–Zatsepin–Kuzmin (GZK) Cutoff²⁷

- Interaction between >50 EeV proton and CMB via pion production
- Heaver nuclei also interact via photo-disintegration Ş
 - Ş Mean free path: **50-100 Mpc (cosmological** neighborhood)
 - Cutoff feature of energy spectrum above 50 EeV
 - Ş The universe's largest-scale interaction between the most energetic particles and the oldest photons

K. Greisen, PRL 16 (17): 748–750. (1966), G.T. Zatsepin and V.A. Kuz'min, JETP Letters. 4: 78–80 (1966)

$p + \gamma_{\rm CMB} \rightarrow \Delta^+ \rightarrow p + \pi^0$ $_{Z}^{A}N + \gamma_{CMB} \rightarrow _{Z-1}^{A-1}N' + p$

Planck Collaboration

Source candidates and next-generation astronomy

Supernova remnant

STRENGT NEUTRON STARS ACTIVE GALACTIC NUCLE1? SUNSPOTS MAGNETIC 01 A STARS RADIO GALAXY CRAB INTERPLANE TARY SPACE 1µG GALACTIC (DISC 10⁶km |_{1AU} 1pc 1kpc 1Mpc 1km SIZE

A. M. Hillas, Astron. Astrophys., 22, 425 (1984)

Neutron star

... or "New physics" Image credits: Max Plank Inst./RIKEN/DESY/Science Comm

Hillas condition $\left(\frac{E_{\text{max}}}{100 \,\text{EeV}}\right) \le Z\left(\frac{B}{10 \,\mu\text{G}}\right)\left(\frac{R}{10 \,\text{kpc}}\right)$

Ş

Ş

Active galactic nuclei

Limitation of nearby sources due to GZK cutoff

Less deflections of Galactic/extragalactic magnetic fields

Directionally correlations between UHECRs and nearby **inhomogeneous sources** to identify their origins

A next-generation "astronomy" using charged particles

"Charged particle astronomy" using ultra-high-energy cosmic rays (UHECRs)

© Osaka Metropolitan University/Kyoto University/Ryuunosuke Takeshige

Low energy cosmic rays

Target : > 10^{19.5} eV, ultrahigh-energy cosmic rays, neutrino and gamma rays + Huge target volume (10x Auger or TAx4) \Rightarrow Fluorescence detector array Fine pixelated camera

Smaller optics and single or few pixels

Fluorescence detector Array of Single-pixel Telescopes

Too expensive to cover a huge area

Low-cost and simplified telescope

Fluorescence detector Array of Single-pixel Telescopes

Fluorescence detector Array of Single-pixel Telescopes

FAST telescope

4 PMTs (20 cm diameter) 1 m² aperture (UV filter) Segmented mirror in 1.6 m diameter

Fluorescence detector Array of Single-pixel Telescopes

UHECR detections

Energy -4.7 km 808 g/cm² 18.8 EeV

Performance studies with FAST

³⁵ Detector developments for next-generation observatories

Low-cost, easily deployable

Fluorescence detector Array of Single-pixel Telescopes (FAST) https://www.fast-project.org

Global Cosmic ray Observatory (GCOS)

Multi-messenger synergies

36

Energy spectra of TA and Auger

Gradually increase to the heavier composition above 3 EeV

R.A. Batista et al., Front.Astron.Space Sci. 6 (2019) 23

Auger and TA joint analysis for all-sky survey

using a different color contour

Energy dependence on the dipole amplitude

THE ASTROPHYSICAL JOURNAL, 891:142 (10pp), 2020 March 10

are shown for comparison (IceCube Collaboration 2012, 2016; KASCADE-Grande Collaboration 2019).

Pierre Auger Collaboration, ApJ 891, 142 (2020)

Figure 1. Reconstructed equatorial dipole amplitude (left) and phase (right). The upper limits at 99% CL are shown for all the energy bins in which the measured amplitude has a chance probability greater than 1%. The gray bands indicate the amplitude and phase for the energy bin $E \ge 8$ EeV. Results from other experiments

Multi-wavelength observation at NGC6946

No significant emissions at hard X-ray and gamma-ray

42

UHECR full-sky by TA and Auger

Ankle (*E*_{TA}>10 EeV, *E*_{Auger}>8.86 EeV) 45° circle

Suppression (*E*_{TA}>52.3 EeV *E*_{Auger}>40 EeV) 20° circle

T. Fujii, PoS (ICRC2021) 402 (2021)

Hillas diagram

A. M. Hillas, Astron. Astrophys., 22, 425 (1984)

$$\left(\frac{E_{\max}}{10 \text{ EeV}}\right) \le Z\left(\frac{B}{1\,\mu\text{G}}\right)\left(\frac{R}{10\,\text{kpc}}\right)$$
$$= Z\left(\frac{B}{10\,\text{mG}}\right)\left(\frac{R}{1\,\text{pc}}\right)$$

Deflection angle in Milky way

$$\theta \sim 10^{\circ} Z \left(\frac{E}{10 \,\mathrm{EeV}} \right)^{-1}$$

Time delay in Milky way $t \sim 100 \,\mathrm{yr} \left(\frac{R}{10 \,\mathrm{kpc}}\right) Z^2 \left(\frac{E}{10 \,\mathrm{EV}}\right)$

A new "lens" for visualizing extensive air showers

Directly penetrating Subaru HSC CCDs

Altitude 4139 m, Mauna Kea, Hawai **Optical and Infra-red telescope** 8.2 m diameter mirror 34' x 27' field of view

CCD size 30 mm x 60 mm

116 CCDs

Image credit: https://subarutelescope.org

App Store (Mac)

individual particles of an extensive air shower

A new "lens" for deciphering extensive air showers

10'mm

S. Kawanomoto, M. Koike et al., Scientific Reports 13:16091 (2023)

Dark Energy Survey

https://www.darkenergysurvey.org/

Possible installation of surface detector array at ventilation room of Subaru Telescope SD L0807 Ş

4 plastic scintillators with 20 m spacing, providing a unique detection combining with Subaru telescope and cosmic ray detectors, like a "lens" of extensive air shower

Extremely energetic particles detected by AGASA

Akeno Giant Air Shower Array (AGASA)

1993~2004, Effective area of **100 km²** December 3rd 1993, 213 (170 – 260) EeV May 10th 2001, ~280 EeV

X [m]

UHECR results in 2000s

No GZK cutoff in spectrum?

Proton dominated composition at highest energies?

Xmax vs LogE(eV) HiRes stereo (circles): HiRes prototype-MIA (squares), Flys Eye (diamonds)

J. Cronin, Nucl.Phys.Proc.Suppl. 138:465 (2005)

 $(\mathrm{gm}/\mathrm{cm}^2)$ Xmax

Work as "physicist" in desert

