Scrutinising cosmic ray accelerators with spectral features

ANTON STALL, CHUN KHAI LOO, PHILIPP MERTSCH

INSTITUTE FOR THEORETICAL PARTICLE PHYSICS AND COSMOLOGY (TTK), RWTH AACHEN

TeV Particle Astrophysics 2024 27 August 2024 Chicago, IL, US

Cosmic ray sources

Long-standing questions

What are the sources of cosmic rays?

How can galactic cosmic rays reach PeV energies?

How do cosmic rays escape their sources?

Aguilar et al., PhR 894, 1 (2021) An et al., SciA 5, eaax3793 (2019)

[CRDB - 2023]

Source scales

- losses for protons above some 10 GV dominated by escape from Galaxy
- escape if $L_{diff} = \sqrt{2\kappa t} \approx z_{max}$
- At 10 GV, 100 times more sources contribute than at 100 TV.

• lifetime of SNR ~100 kyr

$$t_{\rm inj}(\mathcal{R}) \ll t_{\rm transp}(\mathcal{R})$$

Most sources are modeled well by a burst-like injection.

NASA/CXC/Rutgers/J.Warren & J.Hughes et al. - http://chandra.harvard.edu/photo/2005/tycho/ (25.03.2024)

Smooth distribution vs. discrete sources

Stochastic source modelling – Protons

Source modelling – BURST model

Solve cosmic ray transport equation for point source (Green's function)

$$\mathcal{L}[G](t, \mathbf{x}, \mathcal{R}; t_i, \mathbf{x}_i) = \delta(t - t_i) \,\delta(\mathbf{x} - \mathbf{x}_i) \,Q(\mathcal{R}) + \text{boundary condition}$$

Source modelling – BURST model

Add contributions from sources with randomly drawn positions **x**_i and ages t_i

• flux at position **x**₀ and time t₀ is calculated as sum over all source contributions:

$$\Phi = \sum_{i=1}^{N} G\left(t_0, \mathbf{x}_0, \mathcal{R}; t_i, \mathbf{x}_i\right)$$

 ΛI

each contribution calculated the same way

contributions can be calculated in **parallel**

- all rigidities are injected at once
- > does not account for mechanisms that

confine cosmic rays around sources

• high rigidity particles injected first

> Why?

Motivation for escape history

- Maximum rigidity achievable in diffusive shock acceleration around 10 TV (much lower than CR knee at some PeV) [Lagage, Cesarsky 1983]
- > Magnetic field amplification ([Bell 2004] and many more) due to coupling of

cosmic rays with MHD waves

Ejecta dominated phase

- Particles are accelerated up to multiple PV (\mathcal{R}_{max} increases)
- Negligible escape to upstream infinity (towards observer ☺)

Ejecta dominated phase Sedov-Taylor phase (after $\sim 1 \text{ kyr}$)

- when mass swept up by supernova shock equals mass of ejecta
- shock slows down, magnetic field amplification

less effective

$$B\downarrow \implies \mathcal{R}_{\max}\downarrow$$

highest rigidity particles can escape first, lower rigidity ones later

Green's function

$$\mathcal{L}[G](t, \mathbf{x}, \mathcal{R}; t_i, \mathbf{x}_i) = \\ \delta(t_i - t_{\text{esc}}(\mathcal{R}) - t)\delta(\mathbf{x}_i - \mathbf{x})Q(\mathcal{R})$$

Add contributions from N sources

$$\Phi = \sum_{i=1}^{N} G\left(t_0, \mathbf{x}_0, \mathcal{R}; t_i, \mathbf{x}_i\right)$$

Green's function

$$\mathcal{L}[G](t, \mathbf{x}, \mathcal{R}; t_i, \mathbf{x}_i) = \\ \delta(t_i - t_{\text{esc}}(\mathcal{R}) - t)\delta(\mathbf{x}_i - \mathbf{x})Q(\mathcal{R})$$

Add contributions from N sources

$$\Phi = \sum_{i=1}^{N} G\left(t_0, \mathbf{x}_0, \mathcal{R}; t_i, \mathbf{x}_i\right)$$

Green's function

$$\mathcal{C}[G](t, \mathbf{x}, \mathcal{R}; t_i, \mathbf{x}_i) = \\ \delta(t_i - t_{\text{esc}}(\mathcal{R}) - t)\delta(\mathbf{x}_i - \mathbf{x})Q(\mathcal{R})$$

Add contributions from N sources

$$\Phi = \sum_{i=1}^{N} G\left(t_0, \mathbf{x}_0, \mathcal{R}; t_i, \mathbf{x}_i\right)$$

Model classification

Model classification

Decision tree

Classifies input giving it a label of a certain model

Accuracy of classification (Smooth+stat. errors) vs. (BURST/CREDIT) is on the level of 99.99%

CLASSIFICATION

Summary and Outlook

- **1. Individual sources** must be considered for the realistic modelling.
- 2. Local measurements can be used to constrain source properties.
- 3. Machine learning techniques can do the classification reliably at a level beyond 99% for this toy model.

Summary and Outlook

- **1. Individual sources** must be considered for the realistic modelling.
- 2. Local measurements can be used to constrain source properties.
- Machine learning techniques can do the classification reliably at a level beyond 99% for this toy model.

Backup

Motivation for escape history

• Maximum rigidity achievable in diffusive shock acceleration around 10

TV (much lower than CR knee at some PeV) [Lagage, Cesarsky 1983]

$$t_{acc} \sim \frac{D}{u_{sh}^2} \qquad R_{SNR} = u_{sh} t_{acc} \qquad \lambda_{mfp} \geq r_{Larmor} = \frac{\mathcal{R}}{B c}$$

$$R_{SNR} \sim \frac{D}{u_{sh}} \sim \frac{\lambda_{mfp}c}{u_{sh}} \geq \frac{\mathcal{R}_{max}}{B u_{sh}}$$

$$\mathcal{R}_{max} \leq R_{SNR} B u_{sh} \approx 10 \text{ TV} \left(\frac{R_{SNR}}{10 \text{ pc}}\right) \left(\frac{B}{1 \text{ µG}}\right) \left(\frac{u_{sh}}{c/30}\right) \qquad \text{[Bell]}$$

further suppression of factor 10 with a more detailed analysis [Lagage, Cesarsky 1983]

Model classification

Neural network **Classifier scores** classifier score between 0 (statistical 1.0 Burst-like fluctuations) and 1 (CREDIT model) CREDIT Stat. err. CREDIT, but different Rb 0.8 Hidden Layer CDF(classifier_score) Output Layer Input Layer 0.6 h_1 x_1 h_2 0.4 x_2 y0.2 df = 0.0 0.0 x_n h_{m} 0.35 0.20 0.05 0.10 0.15 0.25 0.30 0.40 0.00 classifier_score