KELEY LAB

On track for discovery of sub-GeV dark matter with liquid xenon TPCs

<u>Ryan Gibbons</u> (UC Berkeley, LBNL) Peter Sorensen (LBNL)

TeVPA Chicago 2024 8/26/2024

Xenon TPCs – leading the way in WIMP sensitivity

LZ: 2207.03764

Low-mass dark matter with charge-only signal

- Min. low-energy threshold, $E_g = 9.2 \text{ eV}$
- Attractive for DM-electron scatter searches
 - E.g., hidden sector models

Dominant background – delayed electron emission

- Delayed electron emission "electron trains"
 - Radioactive backgrounds (Rn) subdominant for few-electron signals
- Remove detector backgrounds, the next stop is either dark matter or the neutrino fog*
 - The origin of electron trains has remained elusive

XENON10 data: *1206.2644* See also *1104.3088*

Events are due to electron trains

Delayed emission – electron and photon "trains"

Conclusion first: what causes electron trains?

1. Drifting electrons are trapped on impurities in xenon

2. Trapped electrons are released via photoionization from fluorescence

What causes photon trains?

- Impurities in detector materials fluoresce from Xe VUV light
- PTFE is likely dominant source in Xe TPCs
- All dielectrics are suspect (PEEK, acrylic, ...)

Investigations with xenon TPC at LBNL

- ~ 700 g dual-phase xenon TPC
- 32 SiPM channels
- Typical single electron ~ 20-30 phd

More work from this test stand:

- Solid Xe TPC (crystaLiZe): 2312.15082, 2201.05740
- H/He-doping Xe (HydroX): 2308.02430
- SiPM G3 R&D: 2309.07913

Ryan Gibbons, UC Berkeley | TeVPA 2024

Delayed signal in liquid/vapor xenon TPC

Observe delayed electrons and photons

Using "cascade trigger" to sample delayed times

Nominal delayed emission rates

Delayed photon emission

Delayed electron emission

Increase impurities in xenon \rightarrow increase electron trains

Photon trains unaffected by xenon impurities

Increase in electron trains, agreeing with prior work

Ryan Gibbons, UC Berkeley | TeVPA 2024

Adding 235 nm LED flash after particle scatter

Photon emission ~x5 increase

Electron emission ~x3 increase!

LED-only \rightarrow no electron trains

Still see photon trains! Indicative of UV induced fluorescence

Electron rate constant \rightarrow background e- noise

Ryan Gibbons, UC Berkeley | TeVPA 2024

Photon trains cause electron trains

given impurities in xenon bulk

Characterizing fluorescence (photons trains) at LBNL

- Small vacuum/Xe test chamber to measure delayed photon emission
 - PTFE, PEEK, acrylic, ...
- Identify the main source(s) of photon trains

Implications for GeV WIMP dark matter searches

- Electron/photon trains are major contributor to accidental coincidences
 - Cause significant cut to detector livetime
- Accidentals rate has increased with size of detector
 - Reducing delayed emission necessary for XLZD/G3

Summary

- Dual-phase xenon TPCs have sensitivity to sub-GeV dark matter
 - Currently hindered by delayed electron emission
- Delayed electron emission caused by delayed photon emission
 - Given impurities in the bulk xenon
- Work ongoing at LBNL to characterize delayed electron and photon emission

