Dark, Spiky Primordial Black Holes

Aurora Ireland, University of Chicago TeVPA 2024

Based on [2406.07624]

Overview

- Motivations
- Mini-spike profile
 - Formation
 - Growth
 - Astrophysical effects
- Confronting the data
- Summary

Recent observations of two nearby black hole low-mass X-ray binaries (BH-LMXBs) reveal companion stars with anomalously fast orbital decay rates

	A0620-00	XTE J1118+480
$M_{ m BH} (M_{\odot})$	5.86 ± 0.24	$7.46^{+0.34}_{-0.69}$
$q = M_*/M_{\rm BH}$	0.060 ± 0.004	0.024 ± 0.009
P (day)	0.32301415(7)	0.16993404(5)
₽́ (ms/yr)	-0.60 ± 0.08	-1.90 ± 0.57

[1112.1839], [1311.5412], [1609.02961]

- Dominant sources of angular momentum loss
 - Magnetic braking
 - Mass transfer from donor star $|\dot{P}| \leq 0.03 \text{ ms/yr}$
 - Gravitational wave emission

- Dominant sources of angular momentum loss
 - Magnetic braking
 - Mass transfer from donor star $|\dot{P}| \leq 0.03 \text{ ms/yr}$
 - Gravitational wave emission

significantly smaller than the measured rates $|\dot{P}|_{A} = 0.60 \text{ ms/yr},$ $|\dot{P}|_{X} = 1.90 \text{ ms/yr}$

- Dominant sources of angular momentum loss
 - Magnetic braking
 - Mass transfer from donor star $|\dot{P}| \leq 0.03 \text{ ms/yr}$
 - Gravitational wave emission
- Other explanations?
 - Extremely strong stellar magnetic field?
 - Interactions with the circumbinary disk?
 - Dynamical friction due to dark matter density spike [2212.05664]

significantly smaller than the measured rates $\dot{P}|_{A} = 0.60 \text{ ms/yr},$ $\dot{P}|_{X} = 1.90 \text{ ms/yr}$

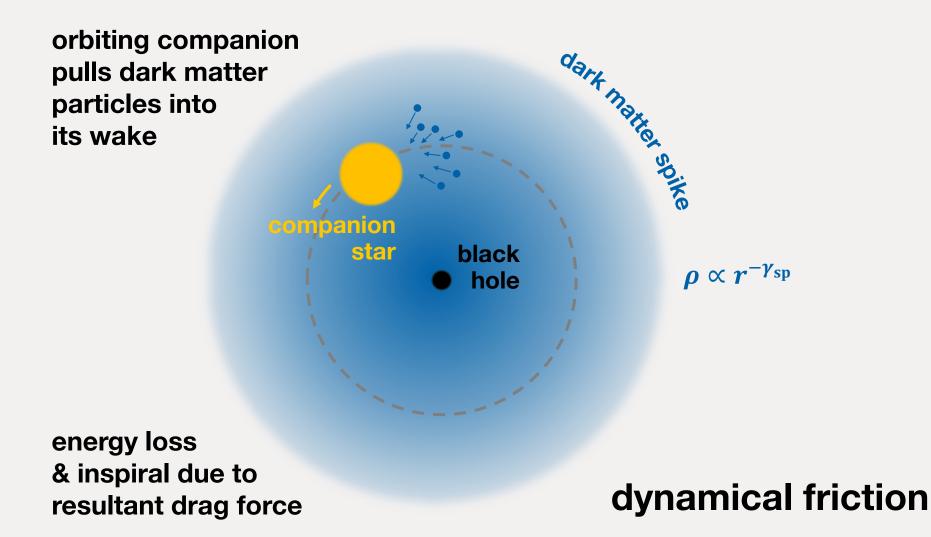
- Dominant sources of angular momentum loss
 - Magnetic braking
 - Mass transfer from donor star $|\dot{P}| \leq 0.03 \text{ ms/yr}$
 - Gravitational wave emission
- Other explanations?
 - Extremely strong stellar magnetic field?

 \Rightarrow Inconsistent with observed binary mass loss rate [1311.5412]

- Interactions with the circumbinary disk?
- Dynamical friction due to dark matter density spike [2212.05664]

significantly smaller than the measured rates $\dot{P}|_{A} = 0.60 \text{ ms/yr},$ $|\dot{P}|_{X} = 1.90 \text{ ms/yr}$

- Dominant sources of angular momentum loss
 - Magnetic braking
 - Mass transfer from donor star $|\dot{P}| \leq 0.03 \text{ ms/yr}$
 - Gravitational wave emission
- Other explanations?
 - Extremely strong stellar magnetic field?

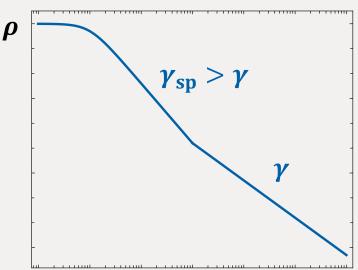

 \Rightarrow Inconsistent with observed binary mass loss rate [1311.5412]

• Interactions with the circumbinary disk?

 \Rightarrow Insufficient mass transfer rate with inner binary [1511.00534]

• Dynamical friction due to dark matter density spike [2212.05664]

significantly smaller than the measured rates $\dot{P}|_{A} = 0.60 \text{ ms/yr},$ $\dot{P}|_{X} = 1.90 \text{ ms/yr}$



- Chan & Lee [2212.05664]
 - $\rho \propto r^{-\gamma_{\rm sp}}$ with $\gamma_{\rm sp} \sim 1.7 1.9$ consistent with observed decay
 - Indirect evidence of DM density spike!

- Chan & Lee [2212.05664]
 - $\rho \propto r^{-\gamma_{sp}}$ with $\gamma_{sp} \sim 1.7 1.9$ consistent with observed decay
 - Indirect evidence of DM density spike!
- **Issue:** Assumed DM profile appropriate for a supermassive BH in the galactic center, **not** a stellar-mass black hole in a LMXB

- Chan & Lee [2212.05664]
 - $\rho \propto r^{-\gamma_{\rm sp}}$ with $\gamma_{\rm sp} \sim 1.7 1.9$ consistent with observed decay
 - Indirect evidence of DM density spike!
- Issue: Assumed DM profile appropriate for a supermassive BH in the galactic center, not a stellar-mass black hole in a LMXB
- DM spikes
 - Arise for intermediate-mass and supermassive BHs growing *adiabatically* in cold, collisionless DM halos

•
$$\rho \propto r^{-\gamma} \rightarrow \rho \propto r^{-\gamma_{\rm sp}}$$
 with $\gamma_{\rm sp} = \frac{9 - 2\gamma}{4 - \gamma}$

- DM density spikes are **not** expected around stellar-mass BHs
 - Weaker gravitational influence
 - Locations in baryon-dense, DM-sparse regions
 - Energetic collapse at late times \Rightarrow little growing time

- DM density spikes are **not** expected around stellar-mass BHs
 - Weaker gravitational influence
 - Locations in baryon-dense, DM-sparse regions
 - Energetic collapse at late times \Rightarrow little growing time
- Light BHs of a **primordial** origin **are** expected to form DM mini-spikes
 - Assembly begins soon after PBH formation
 - After matter-radiation equality, growth through secondary-infall
 - Modified by astrophysical effects

- DM density spikes are **not** expected around stellar-mass BHs
 - Weaker gravitational influence
 - Locations in baryon-dense, DM-sparse regions
 - Energetic collapse at late times \Rightarrow little growing time
- Light BHs of a **primordial** origin **are** expected to form DM mini-spikes
 - Assembly begins soon after PBH formation
 - After matter-radiation equality, growth through secondary-infall
 - Modified by astrophysical effects

Q. Can a primordial origin for these black holes account for the DM density implied by the dynamical friction interpretation?

- Mini-spike assembly begins during radiation domination
- Cold DM particles with small *v*
 - Decouple from Hubble flow
 - Fall into orbit about PBH
- Turn-around radius: $r_{ta} \simeq 1.0 r_s^{1/3} t_{ta}^{2/3}$ [1901.08528] \Rightarrow defines PBH sphere of influence
- Initial DM profile $\rho_i(r)$ depends on whether PBH forms before or after kinetic decoupling
- Formation at:

$$T_{\rm form} = 141 \,\,{\rm MeV} \,\left(\frac{\gamma_{\rm eff}}{0.2}\right)^{1/2} \left(\frac{24.0}{g_{\star}(T)}\right)^{1/4} \left(\frac{M_{\odot}}{M_{\rm BH}}\right)^{1/2}$$

- $T_{\rm form} > T_{\rm kd}$
 - DM too tightly coupled to appreciably accrete \Rightarrow Constant $\rho_{\rm kd}$ out to $r_{\rm ta}(t_{\rm kd})$

After
$$t_{kd}$$
, halo radius grows, diluting as $\rho \propto a^{-3} \propto t^{-3/2}$
 \Rightarrow Mini-spike $\rho_{sp}(r)$ for $r > r_{ta}(t_{kd})$

$$\rho_i(r) = \begin{cases} \rho_{\rm kd} & r < r_{\rm ta}(t_{\rm kd}) \\ \rho_{\rm sp}(r) & r_{\rm ta}(t_{\rm kd}) < r < r_{\rm ta}(t_{\rm eq}) \end{cases}$$

$$\rho_{\rm sp}(r) = \rho_{\rm kd} \left(\frac{r_{\rm ta}(t_{\rm kd})}{\rm r}\right)^{9/4}$$

$$\rho_{\rm kd} = \frac{\rho_{\rm eq}}{2} f_{\rm DM} \left(\frac{r_{\rm ta}(t_{\rm eq})}{r_{\rm ta}(t_{\rm kd})}\right)^{9/4}$$

- $T_{\rm form} > T_{\rm kd}$
 - DM too tightly coupled to appreciably accrete \Rightarrow Constant $\rho_{\rm kd}$ out to $r_{\rm ta}(t_{\rm kd})$

• After
$$t_{kd}$$
, halo radius grows, diluting as $\rho \propto a^{-3} \propto t^{-3/2}$
 \Rightarrow Mini-spike $\rho_{sp}(r)$ for $r > r_{ta}(t_{kd})$

$$\rho_i(r) = \begin{cases} \rho_{\rm kd} & r < r_{\rm ta}(t_{\rm kd}) \\ \rho_{\rm sp}(r) & r_{\rm ta}(t_{\rm kd}) < r < r_{\rm ta}(t_{\rm eq}) \end{cases}$$

$$\rho_{\rm sp}(r) = \rho_{\rm kd} \left(\frac{r_{\rm ta}(t_{\rm kd})}{\rm r}\right)^{9/4}$$

- $T_{\text{form}} < T_{\text{kd}}$:
 - No constant density core, $\rho_i(r) = \rho_{sp}(r)$

$$\rho_{\rm kd} = \frac{\rho_{\rm eq}}{2} f_{\rm DM} \left(\frac{r_{\rm ta}(t_{\rm eq})}{r_{\rm ta}(t_{\rm kd})} \right)^{9/4}$$

- Disruption by large thermal kinetic energy?
 - Demand $|K/U|_{\text{ta}} < 1 \Rightarrow$ Can be satisfied for our $\mathcal{O}(1-10) M_{\odot}$ BHs

- Disruption by large thermal kinetic energy?
 - Demand $|K/U|_{ta} < 1 \Rightarrow$ Can be satisfied for our $\mathcal{O}(1-10) M_{\odot}$ BHs
- Modification by finite DM velocity?

$$\rho(r) = \frac{2}{r^2} \int d^3 v_i f_B(v_i) \int dr_i r_i^2 \frac{\rho_i(r_i)}{\tau_{\rm orb}} \left| \frac{dt}{dr} \right| \quad \Rightarrow \quad \rho(r) \simeq 1.526 \,\rho_{\rm kd} \left(\frac{r_{\rm ta}(t_{\rm kd})}{r} \right)^{9/4}$$

- Disruption by large thermal kinetic energy?
 - Demand $|K/U|_{ta} < 1 \Rightarrow$ Can be satisfied for our $\mathcal{O}(1-10) M_{\odot}$ BHs
- Modification by finite DM velocity?

$$\rho(r) = \frac{2}{r^2} \int d^3 v_i f_B(v_i) \int dr_i r_i^2 \frac{\rho_i(r_i)}{\tau_{\rm orb}} \left| \frac{dt}{dr} \right| \quad \Rightarrow \quad \left| \rho(r) \simeq 1.526 \rho_{\rm kd} \left(\frac{r_{\rm ta}(t_{\rm kd})}{r} \right)^{9/4} \right|$$

- Modification by DM annihilations?
 - Impose upper limit on DM density

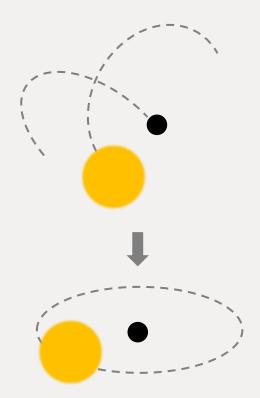
$$\rho_{\rm max} \simeq (1.3 \times 10^{-16} {\rm g/cm^3}) f_{\rm DM} \left(\frac{m_{\rm DM}}{{\rm GeV}}\right) \left(\frac{3 \times 10^{-26} {\rm cm^3/s}}{\langle \sigma v \rangle}\right)$$

• $\Gamma_{ann} \propto \rho^2 \Rightarrow$ Enhanced γ -ray emission \Rightarrow Relevant parameter space excluded

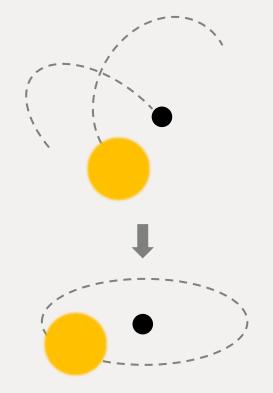
Mini-Spike Growth

- Following t_{eq} , accretion becomes efficient
- Bound shells of DM added at successively larger radii
- Density profile
 - PBH+halo constitute overdensity $\Delta = \delta M / \overline{M}$
 - Density perturbations grow as $\Delta \propto a \propto t^{2/3}$
 - Gravitationally bound mass: $M_{\text{bound}}(t) = M_{\text{bound}}(t_{\text{eq}})(t/t_{\text{eq}})^{2/3}$
 - Turn-around radius:

$$r \propto \left(\frac{M_{\text{bound}}(t)}{\rho(t)}\right)^{1/3} \propto t^{8/9} \propto \rho^{-4/9} \quad \Rightarrow \quad \begin{array}{c} \rho \propto r^{-9/4} \\ \hline \rho \propto r^{-9/4} \\ \hline \text{as before} \end{array}$$

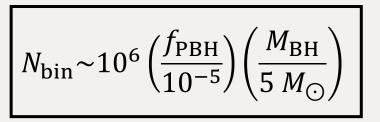

growth by factor ~ 100 between z_{eq} \checkmark and $z \sim 30$

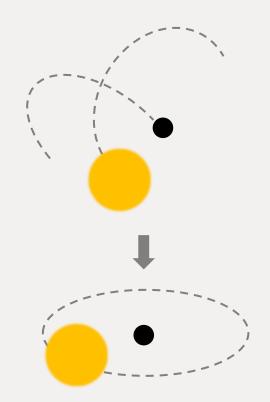
- Various astrophysical processes can disrupt the DM spike
 - Tidal stripping
 - Gravitational scattering/other interactions with stars
 - Dynamical friction
 - Mergers with other PBHs
 - Incorporation in binaries


- Various astrophysical processes can disrupt the DM spike
 - Tidal stripping
 - Gravitational scattering/other interactions with stars
 - Dynamical friction
 - Mergers with other PBHs
 - Incorporation in binaries ⇒ **BH-LMXB formation event**

- Various astrophysical processes can disrupt the DM spike
 - Tidal stripping
 - Gravitational scattering/other interactions with stars
 - Dynamical friction
 - Mergers with other PBHs
 - Incorporation in binaries ⇒ **BH-LMXB formation event**
- Dynamical friction & gravitational scattering with companion star
 - Particles with $v < v_*$ gain energy
 - Energy lost by star heats DM halo
 - Increases velocity dispersion, decreases local DM density

- BH-LMXB formation channel: **Dynamical capture**
 - Energy dissipation due to dynamical friction
- Likelihood highest
 - In dense stellar environments
 - For $M_{\rm BH} \gg M_*$


- BH-LMXB formation channel: **Dynamical capture**
 - Energy dissipation due to dynamical friction
- Likelihood highest
 - In dense stellar environments
 - For $M_{\rm BH} \gg M_*$
- Estimate: $N_{\text{bin}} = N_{\text{enc}} P_{\text{form}} \simeq N_{\text{enc}} (b \leq b_{\text{max}})$
 - Encounter rate: $\Gamma_{enc} = n_{PBH} n_* \sigma v_{rel} \Rightarrow N_{enc} = \Gamma_{enc} \mathcal{V} \mathcal{T} \longleftarrow$ time since reionization
 - Interaction cross section: $\sigma \simeq \pi b_{\max}^2$



volume of

Milky Way

- BH-LMXB formation channel: **Dynamical capture**
 - Energy dissipation due to dynamical friction
- Likelihood highest
 - In dense stellar environments
 - For $M_{\rm BH} \gg M_*$
- Estimate: $N_{\text{bin}} = N_{\text{enc}} P_{\text{form}} \simeq N_{\text{enc}} (b \leq b_{\text{max}})$
 - Encounter rate: $\Gamma_{enc} = n_{PBH} n_* \sigma v_{rel} \Rightarrow N_{enc} = \Gamma_{enc} \mathcal{V} \mathcal{T} \longleftarrow$ time since reionization
 - Interaction cross section: $\sigma \simeq \pi b_{\max}^2$

volume of

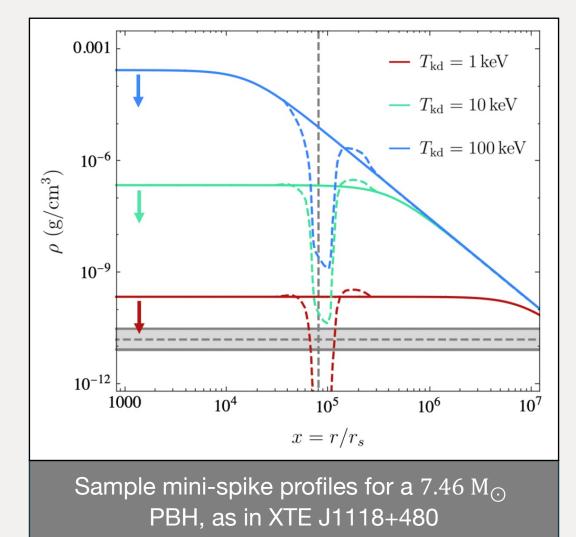
Milky Way

- XTE J1118+480 likely formed through this channel!
 - High metallicity stellar component (pollution from supernova event)
 - Constituents of binary likely not born together [astro-ph/0605107], [0801.4936]
 ⇒ BH can be primordial!

- XTE J1118+480 likely formed through this channel!
 - High metallicity stellar component (pollution from supernova event)
 - Constituents of binary likely not born together [astro-ph/0605107], [0801.4936]
 ⇒ BH can be primordial!
- Concern: Tidal stripping of DM halo?
 - Expect to be mild for $q \ll 1, \epsilon \ll 1$
 - To check, compare mini-spike binding energy to energy lost to dynamical friction
 - Can show $W_{df}/|\Delta U| \ll 1$ across parameter space of interest \Rightarrow spike intact

Confronting the Data

• Energy loss due to dynamical friction:


$$\dot{E}_* \simeq -4\pi\mu^2 G^2 \rho_{\rm orb} \frac{\xi(v_*)}{v_*} \ln \sqrt{1/q}$$

• From
$$|\dot{P}/P| = \frac{3}{2} |\dot{E}_*/E_*|$$
:

$$\rho_{\rm orb} \simeq \frac{1}{6\pi} \frac{M_{\rm Pl}^{8/3}}{M_{\rm BH}^{1/3}} \frac{(1+q)^{5/3}}{q \ln(1/q)} \frac{v_*}{\xi(v_*)} \left| \frac{\dot{P}}{P} \right| \left(\frac{2\pi}{P}\right)^{2/3}$$

	A0620-00	XTE J1118+480
$x_{\rm orb} = r_{\rm orb}/r_s$	$(1.46 \pm 0.04) \times 10^{5}$	$8.01^{+0.56}_{-0.26} imes 10^4$
$ ho_{ m orb}\left({ m g/cm^3} ight)$	$7.62^{+1.62}_{-1.42} \times 10^{-13}$	$1.59^{+1.51}_{-0.74} \times 10^{-11}$

Confronting the Data

Halo feedback from dynamical friction [2002.12811]

Summary

- Two nearby BH-LMXBs suggest evidence of DM density spikes
 - Light BHs formed from stellar collapse don't form density spikes
 - Light primordial BHs do
 - Could the $\mathcal{O}(1-10) M_{\odot}$ BHs in these LMXBs be primordial?
- In this work
 - Derive mini-spike profile for generic DM
 - Scenario plausible for heavy DM with late kinematic decoupling
- Future work
 - Numerical simulations to better model disruption due to astrophysical effects
 - Refined measurements