Dark Kinetic Heating of Exoplanets and Brown Dwarfs

Aidan Reilly

arxiv.org/2405.02393 with J. Acevedo & R. Leane

Outline

- Background / Set up
- Particle Physics Model
- Capture and Heating Calculations
- Example Brown Dwarf Results
- Other Objects
- Summary

Outline

- Background / Set up
- Particle Physics Model
- Capture and Heating Calculations
- Example Brown Dwarf Results
- Other Objects
- Summary

SLAC

Annihilation Heating

SLAC

Annihilation Heating

• Deposits mass energy

Annihilation Heating **Kinetic Heating**

• Deposits mass energy

Annihilation Heating **Kinetic Heating**

• Deposits mass energy **• Deposits kinetic energy**

- Deposits mass energy
- Useful for a wide range of objects
- Deposits kinetic energy

- Deposits mass energy
- Useful for a wide range of objects
- Deposits kinetic energy
- Only Neutron Stars are dense enough

- Deposits mass energy
- Useful for a wide range of objects
- Need larger than local DM density
- Deposits kinetic energy
- Only Neutron Stars are dense enough

- Deposits mass energy
- Useful for a wide range of objects
- Need larger than local DM density

- Deposits kinetic energy
- Only Neutron Stars are dense enough
- Hard to find

Annihilation Heating **Kinetic Heating**

- Deposits mass energy
- Useful for a wide range of objects
- Need larger than local DM density

- Deposits kinetic energy
- Only Neutron Stars are dense enough
- Hard to find

Doesn't have to be the case!

Annihilation Heating **Kinetic Heating**

- Deposits mass energy
- Useful for a wide range of objects
- Need larger than local DM density

- Deposits kinetic energy
- Only Neutron Stars are dense enough
- Hard to find

Doesn't have to be the case!

Annihilation Heating **Kinetic Heating**

- Deposits mass energy
- Useful for a wide range of objects
- Need larger than local DM density

- Deposits kinetic energy
- Only Neutron Stars are dense enough
- Hard to find

Doesn't have to be the case!

Outline

• Background / Set up

- Particle Physics Model
- Capture and Heating Calculations
- Example Brown Dwarf Results
- Other Objects
- Summary

Dark Matter Model

Dark Matter Model

SLAC

Dark Matter particle *χ* (~1 GeV)

SLAC

Dark Matter particle *χ* (~1 GeV)

Ultralight scalar mediator *ϕ*

SLAC

Dark Matter particle *χ* (~1 GeV)

Ultralight scalar mediator *ϕ*

$$
\mathcal{L} \supset \frac{1}{2} (\partial_\mu \phi)^2 \!-\! \frac{1}{2} m_\phi^2 \phi^2 \!+\! \bar{\chi} \left(i \gamma^\mu \partial_\mu - m_\chi \right) \chi \!-\! g_\chi \phi \bar{\chi} \chi
$$

SLAC

Dark Matter particle *χ* (~1 GeV)

Ultralight scalar mediator *ϕ*

$$
\mathcal{L} \supset \frac{1}{2} (\partial_\mu \phi)^2 \!-\! \frac{1}{2} m_\phi^2 \phi^2 \!+\! \bar{\chi} \left(i \gamma^\mu \partial_\mu - m_\chi \right) \chi \!-\! g_\chi \phi \bar{\chi} \chi
$$

Attractive Yukawa Potential between DM particles

$$
V(r)=-\frac{\alpha}{r}e^{-r/\lambda}\qquad \alpha=g_{\chi}^2/4\pi \qquad \lambda\,=\,m_{\phi}^{-1}
$$

Dark Matter particle *χ* (~1 GeV)

Ultralight scalar mediator *ϕ*

$$
\mathcal{L} \supset \frac{1}{2} (\partial_\mu \phi)^2 \!-\! \frac{1}{2} m_\phi^2 \phi^2 \!+\! \bar{\chi} \left(i \gamma^\mu \partial_\mu - m_\chi \right) \chi \!-\! g_\chi \phi \bar{\chi} \chi
$$

Attractive Yukawa Potential between DM particles

$$
V(r)=-\frac{\alpha}{r}e^{-r/\lambda}\qquad \alpha=g_{\chi}^2/4\pi \qquad \lambda\,=\,m_{\phi}^{-1}
$$

Body of DM particles source classic potential

$$
\Phi(r) = N_{\chi} V(r) = -\frac{N_{\chi}\alpha}{r}e^{-\lambda/r}
$$

Dark Matter particle *χ* (~1 GeV)

Ultralight scalar mediator *ϕ*

$$
\mathcal{L} \supset \frac{1}{2} (\partial_\mu \phi)^2 \!-\! \frac{1}{2} m_\phi^2 \phi^2 \!+\! \bar{\chi} \left(i \gamma^\mu \partial_\mu - m_\chi \right) \chi \!-\! g_\chi \phi \bar{\chi} \chi
$$

Attractive Yukawa Potential between DM particles

$$
V(r)=-\frac{\alpha}{r}e^{-r/\lambda}\qquad \alpha=g_{\chi}^2/4\pi \qquad \lambda\,=\,m_{\phi}^{-1}
$$

Body of DM particles source classic potential

$$
\Phi(r) = N_{\chi} V(r) = -\frac{N_{\chi}\alpha}{r}e^{-\lambda/r}
$$

Contact interaction with the SM

Outline

- Background / Set up
- Particle Physics Model
- Capture and Heating Calculations
- Example Brown Dwarf Results
- Other Objects
- Summary

Effective capture radius increases

Effective capture radius increases

Effective capture radius increases

Effective capture radius increases Relativistic boost at surface

 $\dot{N}_{\chi} = \frac{\rho_{\chi}}{m_{\chi}} \pi \langle b_{\rm max}^2 v_{\chi} P_{\rm cap} \rangle$

 $\dot{N}_{\chi} = \frac{\rho_{\chi}}{m_{\chi}} \pi \langle b_{\rm max}^2 v_{\chi} P_{\rm cap} \rangle$

Flux

 $\dot{N}_{\chi} = \frac{\rho_{\chi}}{m_{\chi}} \pi \langle b_{\rm max}^2 v_{\chi} P_{\rm cap} \rangle$ Flux Effective Area

 $\dot{N}_{\chi} = \frac{\rho_{\chi}}{m_{\chi}} \pi \langle b_{\rm max}^2 v_{\chi} P_{\rm cap} \rangle$ Flux Effective Area Probability for capture

(More on this later)

 $\dot{N}_{\chi} = \frac{\rho_{\chi}}{m_{\chi}} \pi \langle b_{\rm max}^2 v_{\chi} P_{\rm cap} \rangle \ \underset{\sim}{\propto} N_{\chi}$ Flux Effective Area Probability for capture

(More on this later)

9

 $\dot{N}_{\chi} = \frac{\rho_{\chi}}{m_{\chi}} \pi \langle b_{\rm max}^2 v_{\chi} P_{\rm cap} \rangle \propto N_{\chi}$ Flux Effective Area Probability for capture

(More on this later)
SLAC

Flux Effective Area Probability for capture $\dot{N}_{\chi} = \frac{\rho_{\chi}}{m_{\chi}} \pi \langle b_{\text{max}}^2 v_{\chi} P_{\text{cap}} \rangle \propto N_{\chi}$ $\Phi(t) \propto e^{\kappa t}$

(More on this later)

SLAC

 $\dot{N}_{\chi} = \frac{\rho_{\chi}}{m_{\chi}} \pi \langle b_{\rm max}^2 v_{\chi} P_{\rm cap} \rangle \;\; \underset{\sim}{\propto}\; N_{\chi}$

Flux Effective Area Probability for capture (More on this later)

$\kappa = \alpha \times f(\lambda, M, R, \dots)$

 $\dot{N}_{\chi} = \frac{\rho_{\chi}}{m_{\chi}} \pi \langle b_{\rm max}^2 v_{\chi} P_{\rm cap} \rangle \propto N_{\chi}$ Flux Effective Area Probability for capture

(More on this later)

 $\kappa = \alpha \times f(\lambda, M, R, \dots)$

SLA0

Assume energy is dissipated as a black body

 $\dot{N}_{\chi} = \frac{\rho_{\chi}}{m_{\chi}} \pi \langle b_{\rm max}^2 v_{\chi} P_{\rm cap} \rangle \propto N_{\chi}$ $\Phi(t) \propto e^{\kappa t}$ $\kappa = \alpha \times f(\lambda, M, R, \dots)$

Assume energy is dissipated as a black body

Flux Effective Area Probability for capture

$$
T_{\chi} \propto e^{\kappa t}
$$

(More on this later)

SLA0

Outline

- Background / Set up
- Particle Physics Model
- Capture and Heating Calculations
- Example Brown Dwarf Results
- Other Objects
- Summary

 $M = 55 M_{\text{Jupiter}}$

$$
M = 55 M_{\text{Jupiter}}
$$
 $R = R_{\text{Jupiter}}$ Age = 10 Gyr

$$
M = 55 M_{\text{Jupiter}}
$$
 $R = R_{\text{Jupiter}}$ Age = 10 Gyr

99% capture Local DM density

 $R = R_{\text{Jupiter}}$

 $M = 55 M_{\text{Jupiter}}$ $R = R_{\text{Jupiter}}$ $Age = 10 Gyr$ 99% capture Local DM density

SLAC

Exponential dependence on coupling strength

Exponential dependence on coupling strength

Exponential dependence on coupling strength Heating at $\lambda \geq R_{\text{Brown Dwarf}}$

SLAC

12

Exponential dependence on coupling strength

Heating at $\lambda \geq R_{\text{Brown Dwarf}}$

Upper limit on changing force range

Can Already Set Limits!

Can Already Set Limits!

Coldest known Super-Jupiter

SLAC

Coldest known Super-Jupiter

Implies constraints: $\alpha \leq 3.7 \times 10^{-27} - 8.6 \times 10^{-26}$ $\lambda \leq (90 - 100)R$ Jupiter

500 450 400 Temperature (K) 350 300 WISE 0855-0714 $250 \cdot$ 200 150 100 7.6 7.8 8.0 8.2 8.4 Galactocentric Distance (kpc)

Coldest known Super-Jupiter

Implies constraints: $\alpha \leq 3.7 \times 10^{-27} - 8.6 \times 10^{-26}$ $\lambda \leq (90 - 100)R$ Jupiter

If older than expected, could also be modeled as a positive signal

SLAC

 $M = 35 - 55 M_{\text{Jupiter}}$ $R = R_{\text{Jupiter}}$ Age = 10 Gyr 99% Capture

Higher density probes weaker couplings

SLAC

Higher density probes weaker couplings Can give insight into DM density profile

SM Cross Section Sensitivity

SM Cross Section Sensitivity

Long range force greatly increases capture probability

Long range force greatly increases capture probability Allows for very low SM cross sections

Long range force greatly increases capture probability

Outline

- Background / Set up
- Particle Physics Model
- Capture and Heating Calculations
- Example Brown Dwarf Results
- Other Objects
- Summary

Other Objects

Outline

- Background / Set up
- Particle Physics Model
- Capture and Heating Calculations
- Example Brown Dwarf Results
- Other Objects
- Summary

Striking and easily detectable Dark kinetic heating signals

Striking and easily detectable Dark kinetic heating signals

• Can already make exclusions

Striking and easily detectable Dark kinetic heating signals

• Can already make exclusions

Sharp probe of the galactic DM distribution

<u>SLAC</u>

Striking and easily detectable Dark kinetic heating signals

• Can already make exclusions

Sharp probe of the galactic DM distribution

<u>SLAC</u>

Striking and easily detectable Dark kinetic heating signals

• Can already make exclusions

Sharp probe of the galactic DM distribution

DM capture is extremely efficient

Striking and easily detectable Dark kinetic heating signals

• Can already make exclusions

Sharp probe of the galactic DM distribution

DM capture is extremely efficient

• Probe of very small DM-SM cross sections

SL AC

Striking and easily detectable Dark kinetic heating signals

• Can already make exclusions

Sharp probe of the galactic DM distribution

DM capture is extremely efficient

• Probe of very small DM-SM cross sections

Various objects can be used to observe complementary regions of parameter space

SL AC
Thermalization Time Scale

We estimate the heating timescale based on the heat capacity of the target material

We estimate the heating timescale based on the heat capacity of the target material

$$
C_v \frac{dT}{dt} = \dot{E}_{\chi} - \dot{E}_{\text{cool}}
$$

SLAC

We estimate the heating timescale based on the heat capacity of the target material

$$
C_v \frac{dT}{dt} = \dot{E}_{\chi} - \dot{E}_{\text{cool}}
$$
Blackbody cooling

SLAC

We estimate the heating timescale based on the heat capacity of the target material

$$
C_v \frac{dT}{dt} = \dot{E}_{\chi} - \dot{E}_{\text{cool}}
$$
Blackbody cooling

For a Brown Dwarf we use an ideal gas heat capacity

We estimate the heating timescale based on the heat capacity of the target material

$$
C_v \frac{dT}{dt} = \dot{E}_{\chi} - \dot{E}_{\text{cool}}
$$
Blackbody cooling

For a Brown Dwarf we use an ideal gas heat capacity

$$
C_{v} = \frac{N_{SM}}{\Gamma - 1}
$$

SLAC

We estimate the heating timescale based on the heat capacity of the target material

$$
C_v \frac{dT}{dt} = \dot{E}_{\chi} - \dot{E}_{\text{cool}}
$$
Blackbody cooling

For a Brown Dwarf we use an ideal gas heat capacity

$$
C_v = \frac{N_{SM}}{\Gamma - 1} \qquad \qquad \Gamma = 7/5
$$

SLAC

We estimate the heating timescale based on the heat capacity of the target material

$$
C_v \frac{dT}{dt} = \dot{E}_{\chi} - \dot{E}_{\text{cool}}
$$
Blackbody cooling

For a Brown Dwarf we use an ideal gas heat capacity

$$
C_v = \frac{N_{SM}}{\Gamma - 1} \qquad \qquad \Gamma = 7/5
$$

Assuming fixed energy injection rates, we find that heating is effectively instantaneous

SLAC

Thermalization Timescales

FIG. 5. Temperature evolution for a benchmark 55 Jupiter-mass brown dwarf and Jupiter, assuming fixed energy injection rates. The dashed line indicates the initial temperature assumed. Each colored label shows the final equilibrium temperature reached for the given line.