Particle Acceleration by Magnetized Turbulence in Coronae of Active Galactic Nuclei

Luca Comisso

Department of Astronomy, Columbia University **Department of Physics, Columbia University**

in collaboration with: D Fiorillo, E Peretti, M Petropoulou, L Sironi

TeV Particle Astrophysics 2024 Aug 26-30, 2024

- Particle acceleration in AGN coronae: neutrinos as probes
- Turbulence-driven particle acceleration in AGN coronae
- Tackling particle acceleration via magnetized turbulence from first principles
 - Fully kinetic modeling of plasma turbulence
- Two stages of particle acceleration
 - Injection (via magnetic reconnection)
 - Stochastic particle acceleration
- Predicted proton and neutrino spectra from the corona of NGC1068

Localized sources of high-energy neutrinos

Active galactic nucleus: a complex environment

Active galactic nucleus: a complex environment

The evolution of the particle density $f_s(\mathbf{x}, \mathbf{p}, t)$ of species s in a collisionless plasma is described by the Vlasov equation

$$\frac{\partial f_s}{\partial t} + \frac{\boldsymbol{p}}{m_s \gamma_s} \cdot \nabla_{\boldsymbol{x}} f_s + \boldsymbol{F} \cdot \nabla_{\boldsymbol{p}} f_s = 0$$
where $\gamma_s^2 = 1 + \frac{|\boldsymbol{p}|^2}{m_s^2 c^2}$ and $\boldsymbol{F} = q_s \left(\boldsymbol{E} + \frac{\boldsymbol{p}}{\gamma_s m_s c} \times \boldsymbol{B} \right)$.
 $\boldsymbol{E}(\boldsymbol{x}, t)$ and $\boldsymbol{B}(\boldsymbol{x}, t)$ are determined from Maxwell's equation $\frac{\partial \boldsymbol{E}}{\partial t} - c \operatorname{curl} \boldsymbol{B} = -4\pi \boldsymbol{J}, \quad \operatorname{div} \boldsymbol{E} = 4\pi \rho,$

$$\frac{\partial \boldsymbol{B}}{\partial t} + c \operatorname{curl} \boldsymbol{E} = 0, \quad \operatorname{div} \boldsymbol{B} = 0,$$
where the source terms are computed by

$$\rho = \sum_{s} q_{s} \int_{\mathbb{R}^{3}} f_{s} d\boldsymbol{p}, \qquad \boldsymbol{J} = \sum_{s} \frac{q_{s}}{m_{s}} \int_{\mathbb{R}^{3}} f_{s} d\boldsymbol{p},$$

uations

$f_s rac{\boldsymbol{p}}{\gamma_s} d\boldsymbol{p}$. 3

Solution via particle-in-cell method

PIC code: TRISTAN-MP (Spitkovsky 2005)

Rendering of electric current density and reconnection in the turbulent cascade

Turbulent cascade from MHD to kinetic scales

Magnetic power spectrum of Solar Wind

Alexandrova et al. 2013

Comisso | TeVPA 2024 8

Turbulent energy cascade in large magnetized systems

range

lst acceleration stage ("injection" via magnetic reconnection)

Comisso | TeVPA 2024 | 0

2nd acceleration stage (stochastic particle acceleration)

Comisso | TeVPA 2024 | |

Stochastic proton acceleration with cooling in the AGN corona

$$\left(\eta = \frac{\ell_c}{R}\right)$$

- $t_{\rm acc}$ is energy-independent
- Bethe-Heitler cooling limits proton energy to 20 TeV (requires sufficiently compact corona)
- electron-proton corona: $n_e/n_p \sim 1$

See also earlier model by Murase et al. '20

Proton energy spectrum in the AGN corona

Predicted neutrino spectrum for NGC1068

- $p\gamma$ and pp production processes compete
- Exponential cutoff rather than power-law suppression (inferred by reconnection-based models*)
- The neutrino signal constrains the allowed range of $\sigma_{tur} = \delta B^2 / 4\pi n_p m_p c^2$ and $\eta = \ell_c / R$
- Neutrino signal provides a testbed for particle acceleration
- * Kheirandish et al. '21, Fiorillo et al '24, Mbarek et al. '24

Key takeaways

- Fully kinetic (first principles) treatment of turbulent plasma
- Turbulence self-consistently produces reconnection layers (which inject particles)
- Particle acceleration to highest energy propelled by stochastic scattering off turb. fluctuations
- Turbulence-driven particle acceleration can explain the neutrino signal from NGC1068

