Neutrino Target-of-Opportunity Observations with EUSO-SPB2 and PBR

Tonia Venters (NASA/GSFC) for the JEM-EUSO Collaboration TeV Particle Astrophysics 2024 | 26 August 2024

JEM-EUSO Pathway to Space

2017 Wanaka

2017 - present ISS

POEMMA Balloon with Radio

POEMMA

2030+ Earth Orbit

2027 Wanaka

EUSO-SPB2

Extreme Universe Space Observatory on a Super-Pressure Balloon 2

- Launch: May 2023 from • Wanaka, NZ
- Two telescopes: •
 - Fluorescence telescope (FT) •
 - Cherenkov telescope (CT) •
- Flight time: 1 day, 12 hrs., 53 • mins.
- Obs. time: 12 hrs., 55 mins. •

Why Search for VHE+ Astrophysical Neutrinos?

- UHECR sources may also produce VHE and UHE vs
- EUSO-SPB2 and PBR sensitive • to > PeV vs \rightarrow complementarity with IceCube
- Pathfinder for future suborbital • and space-based missions (e.g., POEMMA, surveyor)

Flavor ratio at source $-v_e : v_\mu : v_\tau = 1 : 2 : 0$ Flavor ratio at Earth $-v_e: v_\mu: v_\tau = 1:1:1$

Why a Target-of-Opportunity Program?

Many candidate sources • of >PeV vs exhibit transient phenomena

Determining v Sensitivity to Point Sources

- Sample f.o.v. geometry
- Model v_{τ} propagation through the Earth •
- Model EAS Cherenkov signal characteristics •
- Account for motion of sources in f.o.v.
- Account for Sun agd. Mobh

300 Rend+ 2019,

Developing an Observing Strategy

Considerations:

- Dark conditions necessary
- Observing period divided:
 - Above-the-limb pointings
 - Individual target pointings
- Telescope slew time
- Balloon location and trajectory
- Source types w/ different properties
- Realtime alerts
- Multiple sources at the same time
- Human in the loop

EUSO-SPB2 Observing Campaign

- Database of sources refreshed daily; sources obtained from:
 - Alerts (GCN, TNS, ATels)
 - Steady-source list (nearby sources and catalogs)
- Observing schedules generated based on source
 observability and prioritization scheme
- Prioritization motivated by:
 - Source distance
 - Observations/constraints at HEs/VHEs
 - Observability at UHEs
 - Comoving event rate densities
- Sources will be sampled from different categories (e.g., BNS mergers, TDEs, AGN flares, etc.)
- NUTS expected beta release on GitLab: end of 2024 or early 2025

User Input

- Catalogs
- Detector parameters
- Balloon position and trajectory
- Obs. date and period

Listener

- receive alerts, real time of input file
- GCN, TNS, ATels
- · extract information from alerts
- IO_funcs
 - utils to interact with database
 - various formats: db, csv
- Catalogs
 - · inputs and outputs
 - source lists: steady, ATels
 - selection criteria
 - database

- trajectory const., interp. or kml file
- observation_period
 - · observability windows
 - · constraints geometrical fov
 - · constraints Sun and Moon
- scheduling and prioritization
- produce observation schedule
- various strategies available
- visualization: sky maps, trajectories
- · operation: outputs for operators
- UI: user interface

Run Results

- Schedule
- Visualizations

Schematic of NuTargetScheduler Software

• GCN

POEMMA-Balloon with Radio

- Planned launch: Spring 2027 from Wanaka, NZ

Fluorescence and Cherenkov detection; sensitivity to radio

Summary and Outlook

- PBR is the successor to EUSO-SPB2 and a pathfinder for future suborbital and in performing ToO observations.
- In support of ToO observations, the EUSO-SPB2 science team developed an • early next year.
- APRA proposal for PBR accepted and funded. Design work underway, and prototyping for some parts has begun.
- Application for 2027 flight submitted. •

space-based experiments devoted to UHECR and VHE v measurements, particularly

observing campaign and the NUTS software package to optimize the use of valuable observing time. Expect public beta release and journal submission later this year or

Additional Details

- Sources", PRD, 102, 123013
- Cherenkov Detectors", PoS(ICRC2021)977
- Telescope", PoS(ICRC2023)1134
- PoS(ICRC2023)1038
- H. Wistrand, "The Targets of Opportunity Source Catalog for the EUSO-SPB2 Mission, • PoS(ICRC2023)1184
- Upcoming publications on EUSO-SPB2 instruments and results •
- NUTS journal publication in preparation

• T. Venters et al. 2020, "POEMMA's Target of Opportunity Sensitivity to Cosmic Neutrino Transient

• T. Venters, "Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical

• T. Heibges, "Overview of the EUSO-SPB2 Target of Opportunity program using the Cherenkov

J. Posligua, "Neutrino Target-of-Opportunity Sky Coverage and Scheduler for EUSO-SPB2",

UHECR

Backup

NuTargetScheduler (NUTS) Concept

Software package to:

- Process user catalogs
- Supplement catalogs w/ alerts
- Accommodate balloon trajectory
- Account for the Sun and Moon
- Calculate observing windows
- Determine telescope pointings
- Prioritize sources
- Produce human-readable schedules

User Input

- Catalogs
- Detector parameters
- Balloon position and trajectory
- Obs. date and period

Alerts

•

GCN

TNS

Listener

- receive alerts, real time of input file
- GCN, TNS, ATels
- extract information from alerts
- IO_funcs
 - utils to interact with database
 - · various formats: db, csv
- Catalogs
 - · inputs and outputs
 - source lists: steady, ATels
 - selection criteria
 - database

Scheduler

balloon_motion

- trajectory const., interp. or kml file
- observation_period
 - · observability windows
 - · constraints geometrical fov
 - · constraints Sun and Moon
- scheduling and prioritization
- produce observation schedule
- various strategies available
- visualization: sky maps, trajectories
- operation: outputs for operators
- UI: user interface

Run Results

- Schedule
- Visualizations

NUTS Architecture

- Language: Python
- Installation: pip
- 3rd party packages: numpy, scipy, astropy, geopandas, etc.
- Modular design
- Outputs:
 - Observing schedule (lists of sources, obs. times, pointings)
 - Visualizations
- Currently supports balloon detectors; *let us know how we can support you!*
- Expected beta release on GitLab: end of 2024 or early 2025

- Catalogs
- Detector parameters
- Balloon position and trajectory
- Obs. date and period

Listener

- receive alerts, real time of input file
- GCN, TNS, ATels
- extract information from alerts
- IO_funcs
 - utils to interact with database
 - · various formats: db, csv
- Catalogs
 - · inputs and outputs
 - source lists: steady, ATels
 - selection criteria
 - database

Scheduler

• balloon_motion

- trajectory const., interp. or kml file
- observation_period
 - · observability windows
 - · constraints geometrical fov
 - · constraints Sun and Moon
- scheduling and prioritization
- produce observation schedule
- various strategies available
- visualization: sky maps, trajectories
- operation: outputs for operators
- UI: user interface

Run Results

- Schedule
- Visualizations

TNS

•

vSpaceSim

- XML user interface files
- Python wrapped modules
- Containerized distribution for Linus & MacOS
- Multi-core precessing support
- Pre-generated physics libraries (library generation code provided)
 - Neutrino propagation through the Earth (nuPyProp, nuTauSim)
 - Parameterized and simulated EAS profiles
 - Simulated Optical Cherenkov signal properties accounting for atmospheric attenuation
 - Simulated Radio signal properties (ZHAires)
 - Cloud and aerosol data from MERRA-2
- Event-by-event data output in FITS and HDF5 formats
- NASA HEASARC host site

Recap of Theoretical Calculations

- Calculate v_{τ} acceptance
- Leverage v_{τ} propagation studies
- Account for Sun and Moon
- Assumptions:

 α

Balloon trajectory from hist. wind patterns

 $A_{\rm Ch} \simeq \pi (v - s)^2 \left(\theta_{\rm Ch}^{\rm eff}\right)^2$

To distant

source

Slewing in azimuth, but not in nadir

- Per decade all-flavor sensitivity
- 90% upper limit (no background -> 2.44 events)
- Muon showers excluded ($B_{shr} \approx 83\%$)

14 12 10 8 6

Number of $v_{\tau}s$

Catalog Support

Listener

- parser
 - receive alerts, real time of input file
 - GCN, TNS, ATels
 - extract information from alerts
- IO_funcs
 - utils to interact with database
 - various formats: db, csv
- Catalogs
 - inputs and outputs
 - source lists: steady, ATels
 - selection criteria
 - database

Geometry, Pointing, and Observation Time

Catlog

Scheduler

- balloon_motion trajectory const., interp. or kml file observation_period observability windows constraints geometrical fov constraints Sun and Moon produce observation schedule various strategies available visualization: sky maps, trajectories operation: outputs for operators UI: user interface

- scheduling and prioritization

Prioritization

Source Type	Priority
Galactic supernovae	1
Binary neutron star mergers	2
Tidal disruption events	3
Flaring blazar or active galactic nuclei	4
Gamma-ray bursts	5
Supernovae outside of the galaxy	6
Other transients	7
Steady sources	8

- balloon_motion
 - trajectory const., interp. or kml file
- observation_period
 - observability windows
 - constraints geometrical fov
 - constraints Sun and Moon
- scheduling and prioritization
 - produce observation schedule
 - various strategies available
- visualization: sky maps, trajectories
- operation: outputs for operators
- UI: user interface

Observing Schedule

Scheduler
balloon_motion
 trajectory const., interp. or kml file
observation_period
 observability windows
 constraints geometrical fov
 constraints Sun and Moon
scheduling and prioritization
 produce observation schedule
 various strategies available
visualization: sky maps, trajectories
operation: outputs for operators

UI: user interface

- Source (AGN, SI
- Steady F SN II, SI AGN, 4F

GRB, G

type, name	Pointing (az)	Move time	Start time	End tim
DSS J102906.69+555625.2	47.19°	05:00	05:10	05:30
FRB, FRB 20181119A	6.23°	05:30	05:40	06:10
N 2023ftg	81.76°	06:10	06:20	06:50
FGL J0910.0+4257	315.96°	07:50	08:00	08:40
RB230503A	187.66°	09:10	09:20	10:40

Sample schedule from Wistrand et al., PoS(ICRC2023), 1185

Current and Future Development

Functionality	to support:
---------------	-------------

- Poorly-localized sources
- Support for nuSpaceSim
- Additional detector types
- Anything else? Ideas welcome!

EUSO-SPB2 Extreme Universe Space Observatory on a Super-Pressure Balloon 2

- Launch: May 2023 from • Wanaka, NZ
- Two telescopes: •
 - Fluorescence telescope (FT) •
 - Cherenkov telescope (CT) •
- Flight time: 1 day, 12 hrs., 53 • mins.
- Obs. time: 12 hrs., 55 mins. •

Why Search for UHE Astrophysical Neutrinos?

Gamma-ray Bursts

Credit NSF/LIGO/Sonoma State Univ./A Simmonnet

Merging Neutron Stars

Credit: NASA/JPL-Caltech

Active Galactic Nuclei

Flavor ratio at source — $v_e : v_\mu : v_\tau = 1 : 2 : 0$

Newly-born Magnetars

Credit: N. R. Fuller Credit: G. Wang & C. He Tidal Disruption Events

Credit: NASA/GSFC/CI Lab

6

Flavor ratio at Earth — $v_e : v_\mu : v_\tau = 1 : 1 : 1$

Why Search for Astrophysical Neutrinos with PBR?

- Sensitive to PeV neutrinos → complementarity with IceCube
- Lower backgrounds at higher energies
- Pathfinder for future suborbital and space-based missions (e.g., POEMMA)

v_{τ} Acceptance for Point Sources II

-45° -60° -75° -15° 0° 15° 30° 45° 60° 75°

$$E_{v^2}$$
):

Point-source Sensitivity

- Steady or long-duration events lasting ~days or weeks · Short duration events (≤ 1000 s)
- Sensitivity averaged over one or more days
- Accounts for Sun+Moon constraints

Models: Fang & Metzger 2017, Kimura+ 2017

- - Best sensitivity averaged over 1000 s after source dips below Earth's limb
 - No Sun+Moon constraints

See TMV+ 2020, TMV+, ICRC2021

Sky Coverage Map

Stationary – 100 days

 $E = 10^{8.5} \text{ GeV}$

2016 COSI Trajectory

See TMV+ 2020, TMV+, ICRC2021

Recap of Theoretical Calculations

- Calculate v_{τ} acceptance
- Leverage v_{τ} propagation studies
- Account for Sun and Moon
- Assumptions:
 - Balloon trajectory from hist. wind patterns
 - Slewing in azimuth, but not in nadir

 $A_{\rm Ch} \simeq \pi \left(v - s \right)^2 \left(\theta_{\rm Ch}^{\rm eff} \right)^2$

To distant

source

- Per decade all-flavor sensitivity
- 90% upper limit (no background -> 2.44 events)
- Muon showers excluded ($B_{shr} \approx 83\%$)

Point-Source Sensitivity Projections for EUSO-SPB2

- Calculate v_{τ} acceptance
- Leverage v_{τ} propagation studies
- Account for Sun and Moon
- Assumptions:
 - Balloon trajectory from hist. wind patterns
 - Slewing in azimuth, but not in nadir

To distant source

- Per decade all-flavor sensitivity
- 90% upper limit (no background -> 2.44 events)
- Muon showers excluded ($B_{shr} \approx 83\%$)

