2208.06519: Xing Fan, Gerald Gabrielse, Peter W. Graham, Roni Harnik, Thomas G. Myers, Harikrishnan Ramani, Benedict A. D. Sukra, Samuel S. Y. Wong, and Yawen Xiao **2409.xxxxx:** Xing Fan, Gerald Gabrielse, Peter W. Graham, Harikrishnan Ramani, Samuel S. Y. Wong, and Yawen Xiao

Electron Trap as a meV Axion and Dark-Photon Dark Matter Detector

Yawen Xiao Aug 26, 2024 TeVPA 2024

$$
\begin{array}{c}\n\lambda \\
\lambda \\
\lambda\n\end{array}
$$

meV ~ wavelike DM

2

 10^{-19}

 10^{-18}

monitor the cyclotron state by quantizing axial shift

monitor the cyclotron state by quantizing axial shift jump in cyclotron mode $\Rightarrow \omega_z$ shift $\Rightarrow \dot{z} \Rightarrow$ classical current signal

Interaction with Dark Matter

MM

Interaction with Dark Matter

Dark matter will generate photons from the wall!

Interaction with Dark Matter

Dark matter will generate photons from the wall!

Background-free Detection

Quantization of states One single jump is detectable Noise reduced at low T

Proof-of-principle experiment: Background-free over 7.4 days! 5

[S. Peiland G. Gabrielse, Phys.Rev.Lett.83(1999)7]

Proof-of-Principle Experiment

Proof-of-principle experiment: Background-free over 7.4 days! 6

Scanning hurts magnetic field: a strong external magnetic field

-
- Separate the generation and detection process: Open Trap

From DPDM to Axion:

Scanning hurts magnetic field: a strong external magnetic field

-
- Separate the generation and detection process: Open Trap

From DPDM to Axion:

Cavity with strong magnetic field: generating Axions

Scanning hurts magnetic field: a strong external magnetic field

-
- Separate the generation and detection process: Open Trap

From DPDM to Axion:

Cavity with strong magnetic field: generating Axions

Waveguide: transport all generated photons to the trap

$$
n_c = 2 - \frac{1}{\omega_c}
$$

$$
n_c = 1 - \frac{1}{\omega_c}
$$

$$
n_c = 0 - \frac{1}{\omega_c}
$$

$\Gamma_c \propto (n_c + 1)$

$$
n_c = 2 \underbrace{\uparrow}_{\omega_c}
$$
\n
$$
n_c = 1 \underbrace{\downarrow}_{\omega_c}
$$
\n
$$
n_c = 0 \underbrace{\downarrow}_{\omega_c}
$$

$\Gamma_c \propto (n_c + 1)$

$$
n_c = 2 \underbrace{\uparrow}_{\omega_c}
$$
\n
$$
n_c = 1 \underbrace{\downarrow}_{\omega_c}
$$
\n
$$
n_c = 0 \underbrace{\downarrow}_{\omega_c}
$$

$\Gamma_c \propto (n_c + 1)$

Cyclotron lifetime: $\tau_c \approx \frac{1}{n_c} \times 3s$

$\Gamma_c \propto (n_c + 1)$

When the Transition Rate increases,

the Decay Rate also increase

When the Transition Rate increases,

The Decay Rate also increase

Cyclotron lifetime: $\tau_c \approx -\times 3s$ 1 *nc* × Avoid missing: catch signal before *τ^c*

 $\Gamma_c \propto (n_c + 1)$

Highly Excited State n_c

The Decay Rate also increase

Cyclotron lifetime: $\tau_c \approx -\times 3s$ 1 *nc* ×

$\Gamma_c \propto (n_c + 1)$

Highly Excited State n_c

Cyclotron lifetime: $\tau_c \approx -\times 3s$ 1 *nc* ×

 $\Gamma_c \propto (n_c + 1)$

Focusing-Effect of Cavity

$$
\kappa^2 \sim \frac{R}{m_{A'}^{-1}} \qquad \kappa^2 \sim \left(\frac{R}{m_{A'}^{-1}}\right)^2
$$

 Γ_c \propto κ^2
 $\Gamma_{c,\text{cavity}} = \kappa^2 \Gamma_{c,\text{free}}$

Focusing—Effect of Cavity

9

Dark matter drives light to be emitted from the walls; The right cavity geometery can focus this into the center

 Γ_c **α** κ^2
 $\Gamma_{c,\text{cavity}} = \kappa^2 \Gamma_{c,\text{free}}$

A Nicer Design with the same idea

Dark matter drives light to be emitted form the walls; The right cavity geometery can focus this into the center

Dielectric Layers

Baryakhtar et. al [1803.11455]

- got enhanced by resonance
-
-
- **1 switch/month**

Each layer iteslf will contribute to the focusing effect

 N_l **layers** with the same thickness in one stack: λ _DM = thickness

 N_s **stacks** with different thicknesses: broader frequency range

Limited the size of the BREAD cavity $N_l \times N_s < R/d$

$$
\Gamma_c = \Gamma_c \times N_l^2
$$

Conclusion

Using Electron Trap as a Dark Matter Detector **Increase the Result by Optimizing Parameters**

Background-free Over 7.4 Days Detect both Axion and DPDM

Projection

Thank You

*Ques*ti*ons?*

Dark Photon Dark Matter

$$
{\cal L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\epsilon}{2} F^{\mu\nu} F'_{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_\mu A'^\mu
$$

- O Dark $U(1)$
- Massive vector
- o Kinetic mixing
- o Dark Photon Dark Matter

Resonance & Selection Rule

Selection Rule: only one jump at a time.

Due to the small coupling with dark matter

The transition rate is enhanced by the dark matter width $\Delta\omega_{A'} \approx \frac{1}{2} m_{A'} v^2$

First-order perturbation theory applied

$$
e^{A} \propto g_{a\gamma\gamma}^2 B_{\text{ext}}^2 \frac{\rho_{\text{DM}}}{\Delta \omega_a}
$$

Focusing—Effect of Cavity

$\Gamma_{c,\text{cavity}} = \kappa^2 \Gamma_{c,\text{free}}$

Electron Trap as a meV Axion and Dark-Photon Dark Matter Detector

Yawen Xiao Aug 26, 2024 TeVPA 2024

2208.06519: Xing Fan, Gerald Gabrielse, Peter W. Graham, Roni Harnik, Thomas G. Myers, Harikrishnan Ramani, Benedict A. D. Sukra, Samuel S. Y. Wong, and Yawen Xiao **2409.xxxxx:** Xing Fan, Gerald Gabrielse, Peter W. Graham, Harikrishnan Ramani, Samuel S. Y. Wong, and Yawen Xiao

Electron Trap as a meV Axion and Dark-Photon Dark Matter Detector

Yawen Xiao Aug 26, 2024 TeVPA 2024

2208.06519: Xing Fan, Gerald Gabrielse, Peter W. Graham, Roni Harnik, Thomas G. Myers, Harikrishnan Ramani, Benedict A. D. Sukra, Samuel S. Y. Wong, and Yawen Xiao **2409.xxxxx:** Xing Fan, Gerald Gabrielse, Peter W. Graham, Harikrishnan Ramani, Samuel S. Y. Wong, and Yawen Xiao

Stanford

