

Electron Trap as a meV Axion and Dark-Photon Dark Matter Detector

Yawen Xiao Aug 26, 2024 TeVPA 2024

2208.06519: Xing Fan, Gerald Gabrielse, Peter W. Graham, Roni Harnik, Thomas G. Myers, Harikrishnan Ramani,
Benedict A. D. Sukra, Samuel S. Y. Wong, and Yawen Xiao
2409.xxxxx: Xing Fan, Gerald Gabrielse, Peter W. Graham, Harikrishnan Ramani, Samuel S. Y. Wong, and Yawen Xiao

• meV ~ wavelike DM

 10^{-19}

monitor the cyclotron state by quantizing axial shift

monitor the cyclotron state by quantizing axial shift jump in cyclotron mode $\Rightarrow \omega_z$ shift $\Rightarrow \dot{z} \Rightarrow$ classical current signal

Interaction with Dark Matter

Interaction with Dark Matter

Dark matter will generate photons from the wall!

Interaction with Dark Matter

Dark matter will generate photons from the wall!

Background-free Detection

[S. Peiland G. Gabrielse, Phys.Rev.Lett.83(1999)7]

Proof-of-principle experiment: Background-free over 7.4 days!

Quantization of states One single jump is detectable Noise reduced at low T

Proof-of-Principle Experiment

Proof-of-principle experiment: Background-free over 7.4 days!

From DPDM to Axion:

- Separate the generation and detection process: Open Trap

Scanning hurts magnetic field: a strong external magnetic field

From DPDM to Axion:

- Separate the generation and detection process: Open Trap

Cavity with strong magnetic field: generating Axions

Scanning hurts magnetic field: a strong external magnetic field

From DPDM to Axion:

- Separate the generation and detection process: Open Trap

Scanning hurts magnetic field: a strong external magnetic field

Waveguide: transport all generated photons to the trap

Cavity with strong magnetic field: generating Axions

Highly Excited State n_c

$$n_c = 2 - 1$$

$$\omega_c$$

$$m_c = 1 - 1$$

$$\omega_c$$

$$\omega_c$$

Highly Excited State n_c

$$n_c = 2 - 1 - \frac{\omega_c}{\omega_c}$$
$$n_c = 1 - \frac{\omega_c}{\omega_c}$$
$$n_c = 0 - \frac{\omega_c}{\omega_c}$$

Cyclotron lifetime: $\tau_c \approx \frac{1}{n_c} \times 3s$

$\Gamma_c \propto (n_c + 1)$

When the Transition Rate increases,

the Decay Rate also increase

Avoid missing: Cyclotron lifetime: $\tau_c \approx \frac{1}{n_c} \times 3s$ catch signal before τ_c

 $\Gamma_c \propto (n_c + 1)$

When the Transition Rate increases,

The Decay Rate also increase

Cyclotron lifetime: $\tau_c \approx \frac{1}{n_c} \times 3s$

$\Gamma_c \propto (n_c + 1)$

The Decay Rate also increase

Cyclotron lifetime: $\tau_c \approx \frac{1}{n_c} \times 3s$

 $\Gamma_c \propto (n_c + 1)$

Focusing-Effect of Cavity

 $\kappa^2 \sim \frac{R}{m_{A'}^{-1}} \qquad \kappa^2 \sim \left(\frac{R}{m_{A'}^{-1}}\right)^2$

 $\frac{\Gamma_c \propto \kappa^2}{\Gamma_{c,\text{cavity}} = \kappa^2 \Gamma_{c,\text{free}}}$

Focusing-Effect of Cavity

Dark matter drives light to be emitted from the walls; The right cavity geometery can focus this into the center

 $\Gamma_c \propto \kappa^2$ $\Gamma_{c,\text{cavity}} = \kappa^2 \Gamma_{c,\text{free}}$

9

Dark matter drives light to be emitted form the walls; The right cavity geometery can focus this into the center

A Nicer Design with the same idea

BREAD:

Dielectric Layers

Baryakhtar et. al [1803.11455]

- got enhanced by resonance

- 1 switch/month

Each layer iteslf will contribute to the focusing effect

* N_1 layers with the same thickness in one stack: λ _DM = thickness

 N_{s} stacks with different thicknesses: broader frequency range

• Limited the size of the BREAD cavity $N_l \times N_s < R/d$

$$\Gamma_c = \Gamma_c \times N_l^2$$

Conclusion

Using Electron Trap as a Dark Matter Detector
Background-free Over 7.4 Days
Detect both Axion and DPDM
Increase the Result by Optimizing Parameters

Projection

Thank You

Questions?

Dark Photon Dark Matter

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \left(\frac{\epsilon}{2} F^{\mu\nu} F'_{\mu\nu} \right) + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu}$$

- Dark U(1)
- Massive vector
- Kinetic mixing
- Dark Photon Dark Matter

Resonance & Selection Rule

Selection Rule: only one jump at a time.

Due to the small coupling with dark matter

First-order perturbation theory applied

,free
$$\propto g_{a\gamma\gamma}^2 B_{\rm ext}^2 \frac{\rho_{\rm DM}}{\Delta \omega_a}$$

e,free $\propto \epsilon^2 \frac{\rho_{\rm DM}}{\Delta \omega_{A'}}$

The transition rate is enhanced by the dark matter width $\Delta \omega_{A'} \approx \frac{1}{2} m_{A'} v^2$

Focusing-Effect of Cavity

$\Gamma_{c,\text{cavity}} = \kappa^2 \Gamma_{c,\text{free}}$

Electron Trap as a meV Axion and Dark-Photon Dark Matter Detector

Yawen Xiao Aug 26, 2024 TeVPA 2024

2208.06519: Xing Fan, Gerald Gabrielse, Peter W. Graham, Roni Harnik, Thomas G. Myers, Harikrishnan Ramani,
 Benedict A. D. Sukra, Samuel S. Y. Wong, and Yawen Xiao
 2409.xxxxx: Xing Fan, Gerald Gabrielse, Peter W. Graham, Harikrishnan Ramani, Samuel S. Y. Wong, and Yawen Xiao

Electron Trap as a meV Axion and Dark-Photon Dark Matter Detector

Yawen Xiao Aug 26, 2024 TeVPA 2024

2208.06519: Xing Fan, Gerald Gabrielse, Peter W. Graham, Roni Harnik, Thomas G. Myers, Harikrishnan Ramani,
Benedict A. D. Sukra, Samuel S. Y. Wong, and Yawen Xiao
2409.xxxxx: Xing Fan, Gerald Gabrielse, Peter W. Graham, Harikrishnan Ramani, Samuel S. Y. Wong, and Yawen Xiao

