Final state radiation (FSR) impacts high and ultrahigh energy neutrino observations

Bei Zhou

Research Associate, Theoretical Physics Department, Fermi National Accelerator Laboratory Associate Fellow, Kavli Institute for Cosmological Physics, University of Chicago

Based on arXiv: 2403.07984 Ryan Plestid (Caltech), Bei Zhou (Fermilab & KICP)

More than half a century after the establishment of the quantum electrodynamics, it still has a radiative correction of as large as 25% to be studied.

And it has also been overlooked by current experiments on HE and UHE neutrinos.

Why do we study HE&UHE neutrinos

- Astrophysics (highlighted by astro2020): Origin of HE/UHE astrophysical neutrinos
 - Sources of HE/UHE cosmic rays (> 60-year problem)
 - Cosmic particle acceleration, propagation
 - Cosmic gamma ray sources, hadronic vs leptonic mechanism
 - Dense astrophysical environments
 - Essential for multi-messenger astrophysics

- Particle physics (highlighted by P5 report):
 - Neutrino interactions in the SM (Deep-inelastic scattering, W-boson production, Glashow resonance, final state radiation, etc.)
 - Measure neutrino mixing parameters
 - Test BSM (ν portal to DM, new ν interactions, sterile ν, magnetic moment, etc.)

Lots of HE/UHE nu telescopes running or to build

HE neutrino telescopes (~100 GeV--100 PeV)

Detector	Size	Status
IceCube	1 km³	Running for ~14 yrs
KM3NET	1 km³	Running, constructing
Baikal-GVD	1 km³	Running, constructing
P-ONE	multi-km³	Proposed
IceCube-Gen2	7.9 km³	Proposed
TRIDENT	7.5 km³	Prototype
Etc		

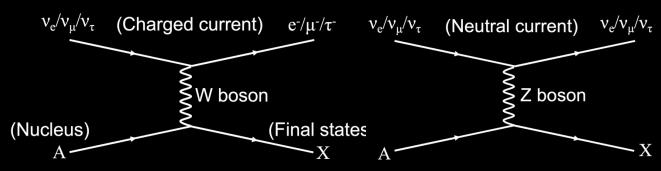
Laboratory HE nu experiments (~10 GeV--5 TeV)

Detector	Size	Status
FASERv	Neutrino beam	Running
SND@LHC	Neutrino beam	Running
FASERv2	Neutrino beam	Proposed
AdvSND@LHC	Neutrino beam	Proposed
FLArE	Neutrino beam	Proposed

UHE neutrino telescopes (>~100 PeV)

Size	Status
	Finished
	Running
	Running
	Constructing
	Constructing
	Prototype
	Prototype
	Proposed
	Prototype
	Size

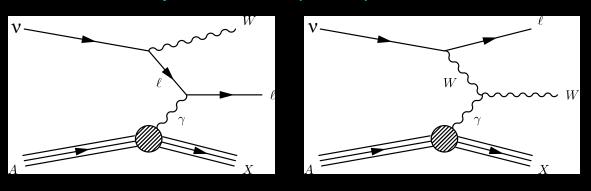
2203.08096, Ackermann,, <u>BZ</u> (Snowmass) for a complete list


Increasing statistics requires studies of HE/UHE nu interactions

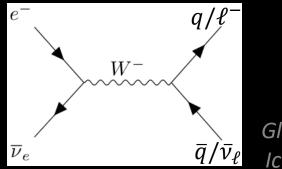
- Neutrino interactions are the cornerstone of all kinds of neutrino-related measurements
 - Astrophysics: energy spectrum, flavor composition, arrival direction, etc.
 - Particle physics: mixing parameters; all BSM studies contingent on well-understood SM interactions
- Help us to find new event classes: useful for both astrophysics and particle physics studies
 - E.g., dimuons for high-energy neutrino detection (2110.02974 <u>BZ</u>, Beacom).
- Neutrino(-nucleus) interaction theory is interesting (and sometimes difficult):
 - Neutrino only has weak interactions, but neutrino interaction studies involves much more
 - Weak, electroweak
 - QED (e.g., final state ration, W-boson and trident production)
 - Strong interactions: QCD (parton distribution functions), nuclear model, resonance prod., etc.
 - (Also detection physics because you need to detect them.)

Overview of HE&UHE neutrino interactions

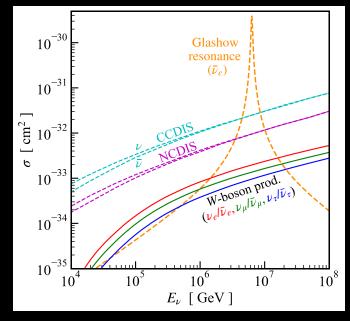
Deep inelastic scattering (DIS) dominates


(as good as ~1% precision)

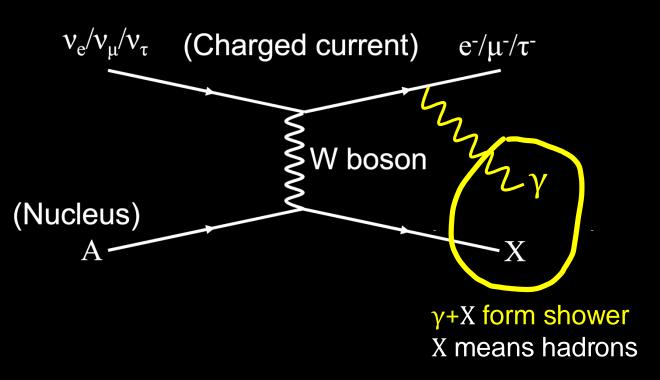
Gandhi+ 96&97, Connolly+ 11, Cooper-Sarkar+ 11, Bertone+ 16, etc.


Most recent: Xie, et al. 2303.13607

W-boson production (WBP) is subdominant


(Seckel 1997, Alikhanov 2015, <u>BZ</u>, Beacom, 1910.08090)

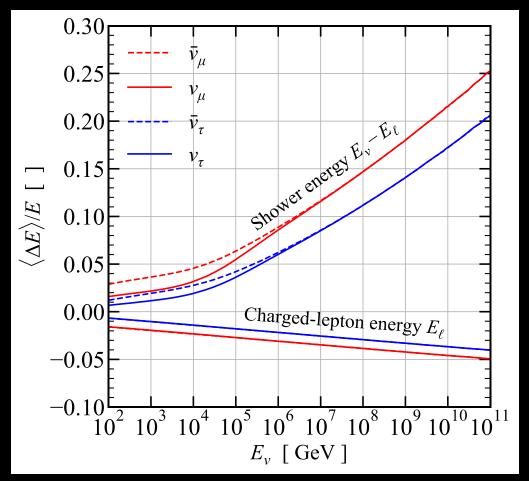
Glashow resonance for $\bar{\nu}_e$


Glashow 1960 IceCube 2021

Cross sections

(BZ, Beacom, 1910.10720)

Our work: final state radiation (FSR) on top of neutrino CC DIS



Effect on total xsec: small (~1%, c.f.).

Effects on the differential xsec: big, due to the kinematic logs.

→ So, it affects observation if charged lepton and shower are separate.

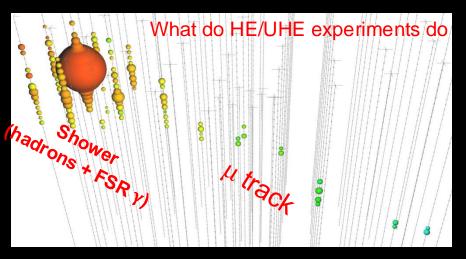
FSR impacts the energies of the final states from HE/UHE interactions

Correction increases with energy, up to 25%(!)

Correction on $v\mu > v\tau$, cuz $m_\mu < m_\tau$

Correction on shower > charged lepton

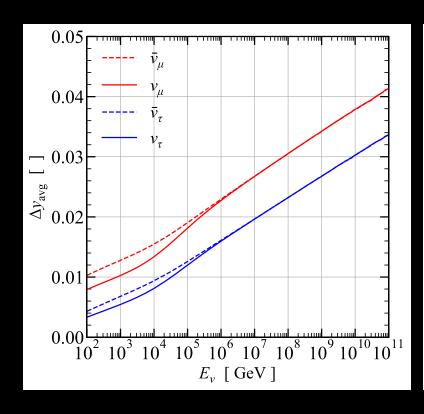
Correction on shower further enhanced by 10—20% due to light yields from EM shower > hadronic shower

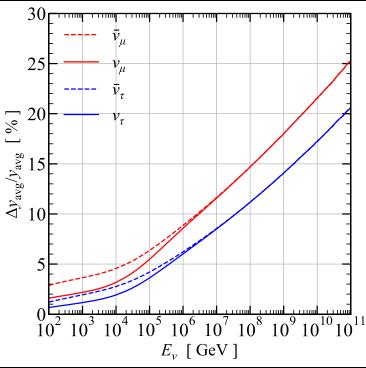

Difference between nu and nubar

Photon takes energy from the charged lepton to the shower

(Plestid, <u>BZ</u>, 2303.08984)

Final state radiation impacts the inelasticity (y) measurements


$$y_{\rm QCD} \equiv \frac{E_X}{E_\nu} = \frac{E_\nu - E_\ell}{E_\nu}$$



$$y_{\rm exp} \equiv \frac{E_{\rm shower}}{E_{\rm track} + E_{\rm shower}} = y_{\rm QCD} + \frac{E_{\gamma}}{E_{\nu}}$$

$$\Delta y_{\rm avg} \equiv \langle y_{\rm exp} \rangle - \langle y_{\rm QCD} \rangle = \langle E_{\gamma} \rangle / E_{\nu}$$

So, photon takes energy from the charged lepton to the shower, increasing <y>

(Plestid, <u>BZ</u>, 2303.08984)

Correction increases with energy, up to 25%(!)

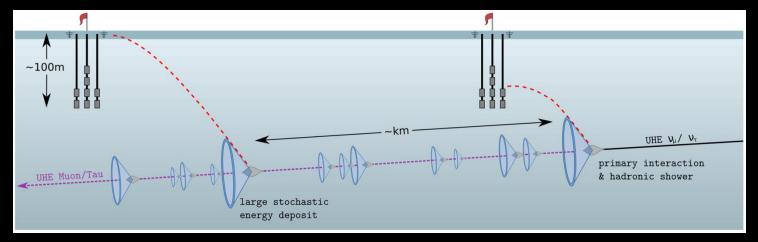
Final state radiation impacts high-energy (~100 GeV—100 PeV) neutrino observations

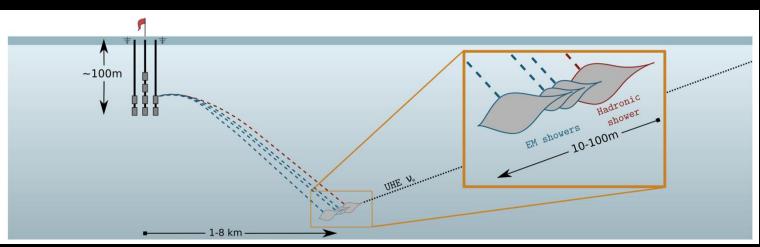
Measurements based on inelasticity measurement

- 1. Neutrino-antineutrino flux ratio (5% shift)
- 2. Neutrino mixing parameters
 - Inel. dist. helps to separate nu/nubar
- 3. Charm production from nu interactions
 - CCDIS /w charm production has higher inelasticity

Other measurements

- 1. Throughgoing muons
 - Without FSR, underestimate parent Eν (~5%)
- 2. Double bang signature from tau neutrinos
 - Inference of the parent neutrino energy
 - Reduce the detectability

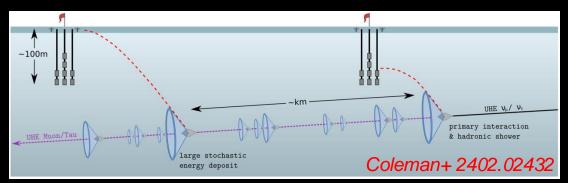

FSR impacts UHE nu observations: in-ice radio detectors (e.g., ANITA, PUEO)


For CCDIS, FSR enhances the overall detectable (shower) energy by as much as ≃20%, which effectively lowers the energy thresholds.

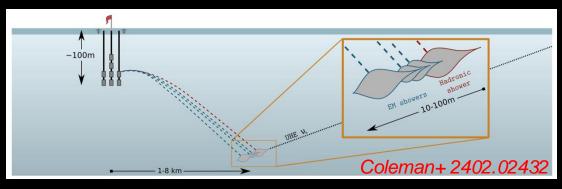
ντ CC, big, up to \approx 20%

νμ CC, mild

ve CC, negligible

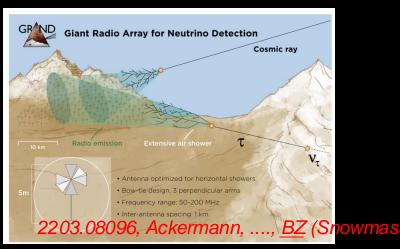


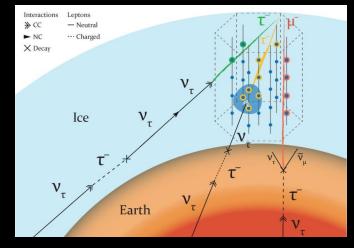
2402.02432 Coleman et al.


Final state radiation impacts ultrahigh-energy (>~100 PeV) neutrino observations

In-ice radio detectors (e.g., ANITA, PUEO)

- 1) If charged lepton barely detectable, FSR enhances detectable (shower) energy by ~20%.
- 2) A way to measure $\nu\mu/\nu\tau$, FSR reduces the detectability (~5%)


3) A way to measure ve (using LPM effect);


Bkgd rate: 0% (w/o FSR) VS ~30% (w/ FSR)

Air shower detectors (main for $v\tau$, e.g., POEMMA)

1) Earth emergent τ ; w/o FSR underestimates parent Ev by ~5%

2) nutau regeneration, 5%*N

FSR impacts on the neutrino flux and spectrum measurement

Flux normalization:

Any bias on the total detectable energy due to FSR in the previous slides will be amplified when measuring the neutrino flux normalization due to the steeply falling spectrum

$$(1-\delta_E)^{-\Gamma} \simeq 1 - \Gamma^*\delta_E$$

For example, $\Gamma=3$, $\delta_E=5\%$, the bias is 15% $\Gamma=3$, $\delta_E=20\%$ (UHE $\nu\tau$ CCDIS), the bias is 60%

Spectral shape:

FSR's effect is energy dependent, so it affects the spectrum shape measurement.

Thanks for your attention!

Calculation

DIS cross section

$$\frac{\mathrm{d}^2 \sigma_{\nu,\overline{\nu}}^{(0)}}{\mathrm{d}x \mathrm{d}y} = \frac{G_F M E_{\nu}}{\pi (1 + Q^2 / M_W^2)^2} \times \left[y^2 F_1 + (1 - y) F_2 \pm x y (1 - y/2) F_3 \right]$$

from Xie et al. 2303.13607, CTEQ collaboration

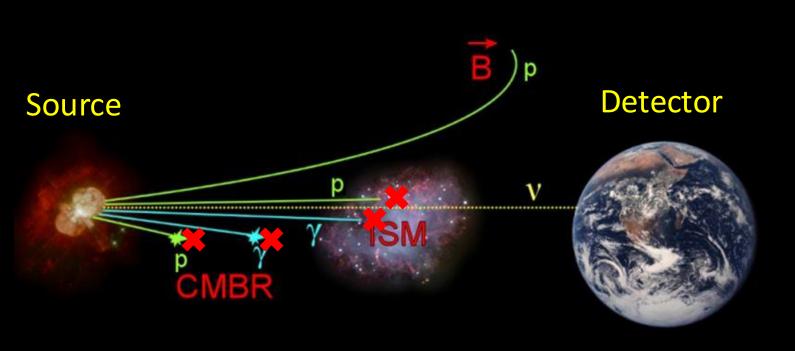
Collinear log

$$P_{\ell \to \ell \gamma}(z) = \frac{\alpha}{2\pi} \log \left(\frac{s}{m_{\ell}^2}\right) \left[\frac{(1+z^2)}{[1-z]_+} + \frac{3}{2}\delta(1-z)\right],\tag{6}$$

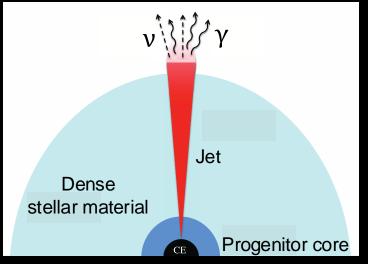
$$\frac{\mathrm{d}\sigma^{(1)}}{\mathrm{d}E_{\ell}} = \frac{\alpha}{2\pi} \int \mathrm{d}y \int \mathrm{d}z \, \frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}y} \delta(E_{\ell} - (1 - y)zE_{\nu})
\times \log\left(\frac{s}{m_{\ell}^{2}}\right) \left[\frac{1 + z^{2}}{[1 - z]_{+}} + \frac{3}{2}\delta(1 - z)\right].$$
(7)

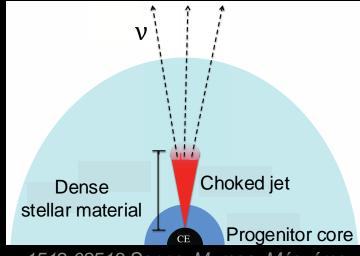
(Plestid, <u>BZ</u>, 2303.08984)

A rough estimate using Sudakov form factor


Collinear log Soft log

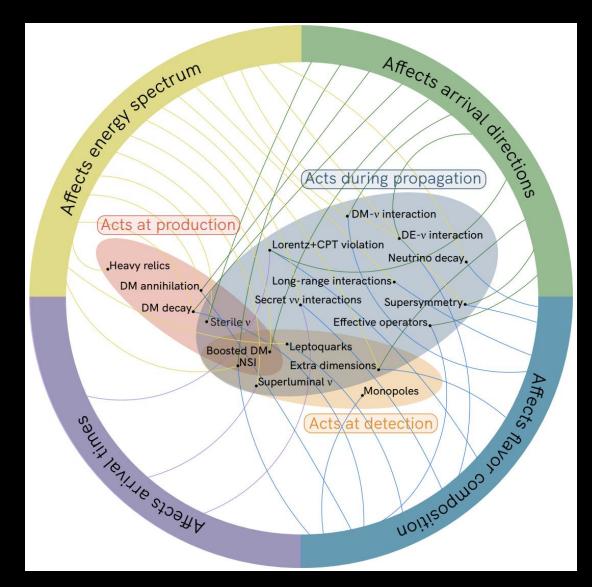
$$\left| F_S(s, E_{\min}) \sim \exp\left[-\frac{\alpha}{2\pi} \log\left(\frac{s}{m_\ell^2}\right) \log\left(\frac{E_\ell^2}{E_{\min}^2}\right) \right] \right|$$


which gives the probability to *not* radiate any photons above E_{\min} in a collision with center-of-mass energy \sqrt{s} and final-state charged-lepton energy E_{ℓ} . Taking ℓ as the muon (μ) , $E_{\min} \simeq \frac{1}{10} E_{\mu}$, and $s \simeq 2 E_{\nu} m_N$ (m_N) is the nucleon mass) with $E_{\nu} = 10$ TeV, we find $F_S \sim 0.9$. This implies that roughly 10% of all events will contain some prompt real and energetic photon radiation.


Why do we study high-energy neutrinos: astrophysics

Cosmic ray sources

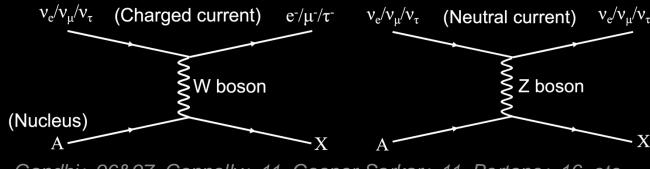
Dense environment



1512.08513 Senno, Murase, Mészáros 2210.03088 Chang, <u>BZ</u>, Murase, Kamionkowski

Why do we study high-energy neutrinos: BSM

Why HE neutrinos special for BSM:


- High energy, inaccessible by lab ν experiments
- **Known direction**
- Travel cosmic distance, small effects accumulates to big effects
- Extremely high column density (through Earth)

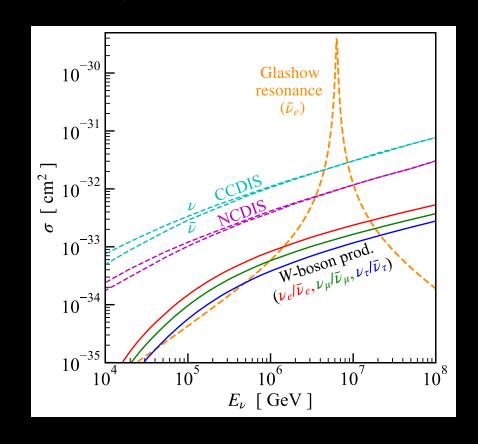
HE/UHE neutrino interaction studies so far, not enough

Deep inelastic scattering (DIS) dominates

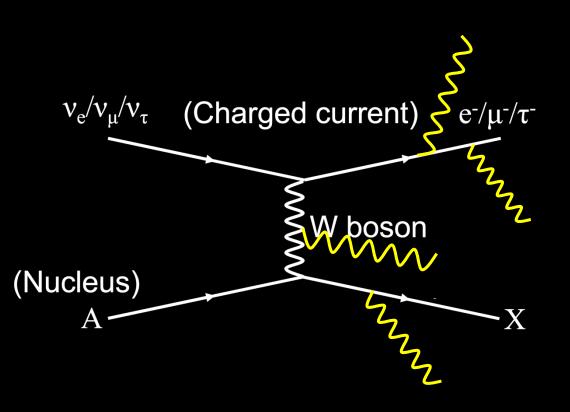
(~1% precision)

Gandhi+ 96&97, Connolly+ 11, Cooper-Sarkar+ 11, Bertone+ 16, etc.

Most recent: Xie, et al. 2303.13607


W-boson production is subdominant

Seckel 1997; Alikhanov 2015; <u>BZ</u>, Beacom 1910.08090, 1910.10720

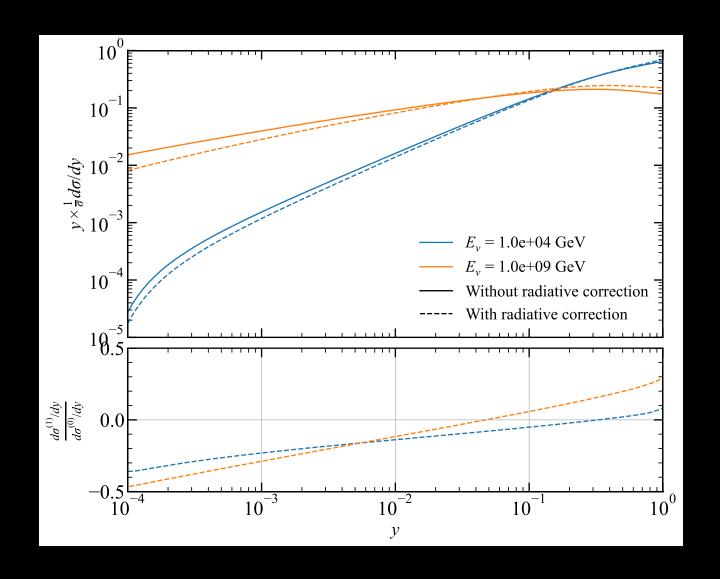

Glashow resonance important for $\bar{\nu}_e$

Glashow 1960, IceCube 2021

Cross sections

Photons from other parts of the diagram: not important

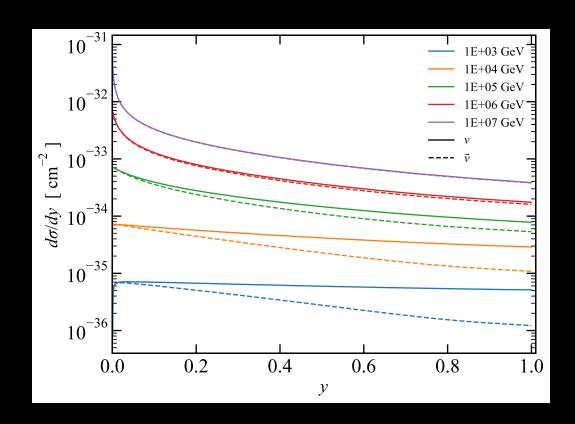
Photon from W boson: suppressed by W mass

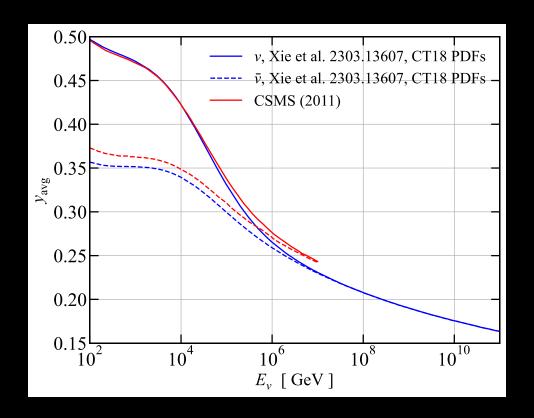

Photon from quarks:

- 1) hard to distinguish from the hadronic cascade
- 2) Eγ small as quark energy << lepton energy

Multi-photon emission: higher order, small

Illustration of FSR impacts on DIS differential xsec


$$y_{\rm QCD} \equiv \frac{E_X}{E_\nu} = \frac{E_\nu - E_\nu}{E_\nu}$$



FSR impacts on the inelasticity

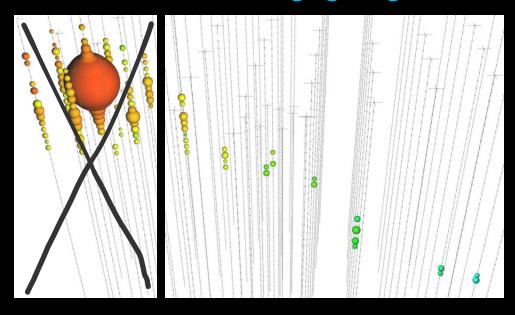
Theoretical definition:

$$y_{\rm QCD} \equiv \frac{E_X}{E_\nu} = \frac{E_\nu - E_\ell}{E_\nu}$$

FSR impacts HE nu observation: nu mixing parameters & charm production

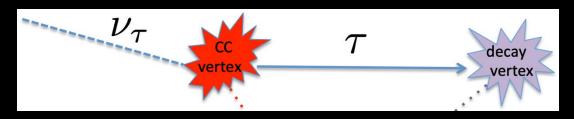
Neutrino mixing

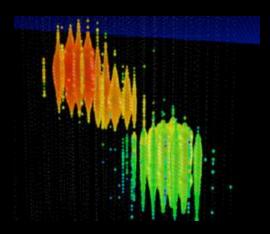
Inelasticity measurements help to separate nu and nubar, which helps with measuring neutrino mass hierarchy and CP violation. The sensitivity can be increased by $\approx 30\%$. (1303.0758, 1312.0457, 2402.13308)


And FSR will affect the measurements

Charm production

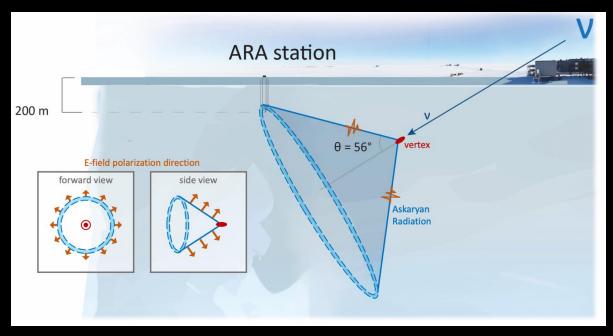
Neutrino DIS with charm production has a larger inelasticity than those without...


FSR impacts HE nu observation: throughgoing muons & $\nu_{ au}$ double bang

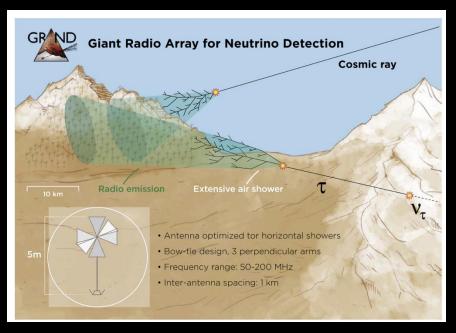

Throughgoing muon

Not including FSR underestimates the parent neutrino energy

ν_{τ} induced double bang

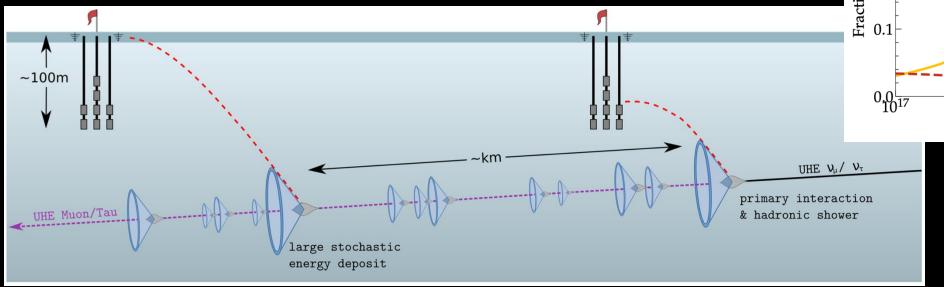


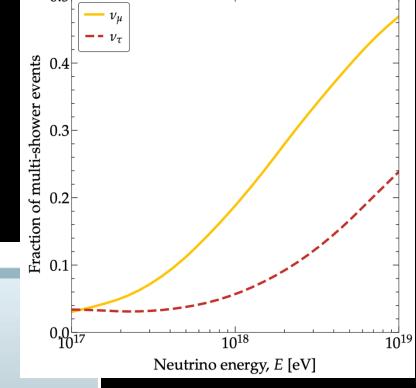
FSR 1) distort the energy balance the two bangs 2) reduce the detectability of the double bang signature.


HE nu observation: two basic kinds of detectors

In-ice radio detectors
(all flavors; hard to distinguish flavors)

1912.00987 ARA collaboration


Air shower detectors (main for $v\tau$)



2203.08096, Ackermann,, <u>BZ</u> (Snowmass WP)

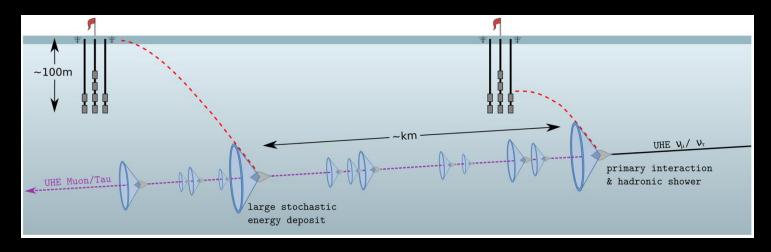
FSR impacts UHE nu observation: in-ice radio detectors

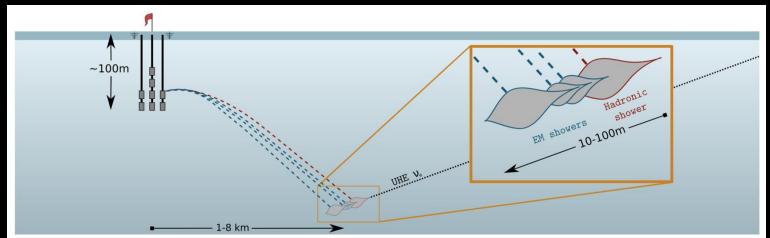


2402.02432 Coleman et al

FSR impacts UHE nu observation: in-ice radio detectors

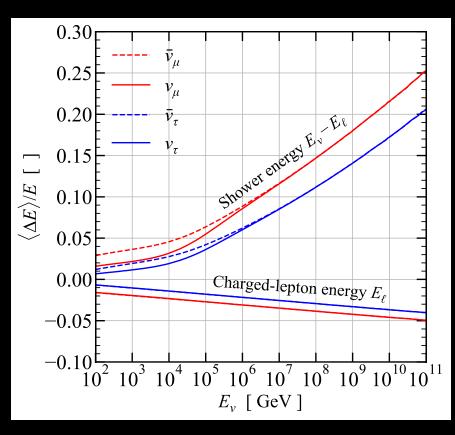
A way to measure electron neutrinos (using LPM effect)

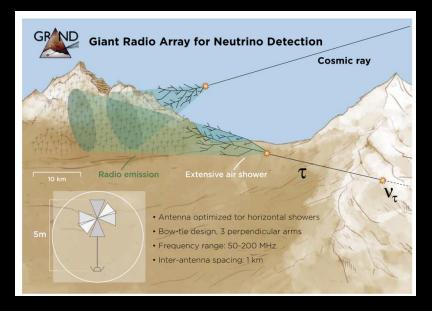


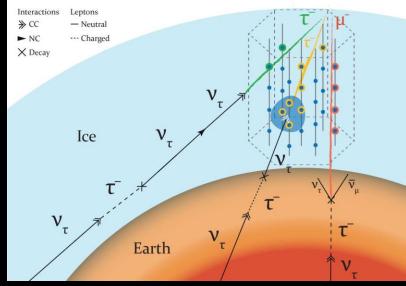

Background could be from muon/tau neutrino CC interactions. Without FSR, the paper estimates that bkgd rate is negligible With FSR, we estimate that bkgd rate is ~30% of signal rate

2402.02432 Coleman et al

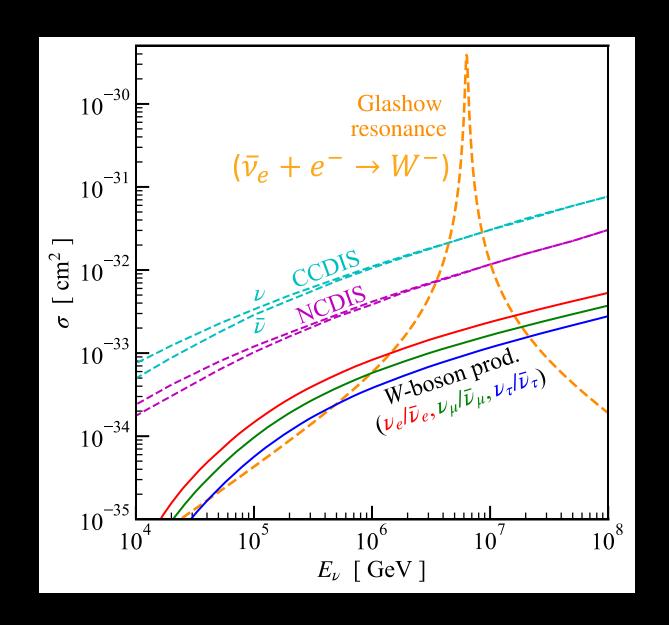
FSR impacts UHE nu observation: in-ice radio detectors


If the charged from CC interaction barely deposit energies to the antenna, then FSR enhances the detectable (shower) energy by as much as 25%!




2402.02432 Coleman et al

FSR impacts UHE nu observation: air shower detectors for ντ



(Plestid, <u>BZ</u>, 2303.08984)

2203.08096, Ackermann, ..., <u>BZ</u> (Snowmass WP)

FSR impacts HE nu detection in collider/accelerator neutrinos

Example: measuring parton distribution function (PDF) using data of FASERv (running) and future FASERv2

FASERv (running) will have ~2×10⁴ neutrino CCDIS events FASERv2 (proposed) will have ~10⁶. Enough data to perform PDF(x, Q²) measurements

Without FSR:
$$x_{(0)} = \frac{Q_{(0)}^2}{2m_N E_X}; \quad Q_{(0)}^2 = 4E_{\nu} E_{\ell} \sin^2\left(\frac{\theta_{\ell}}{2}\right)$$

With FSR:
$$\frac{\Delta Q^2}{Q_{(0)}^2} \simeq -\frac{E_\gamma}{E_\ell}$$
 A few percent but large statistics

$$\frac{\Delta x}{x_{(0)}} \simeq -\frac{E_{\gamma}}{E_X} - \frac{E_{\gamma}}{E_{\ell}}$$
 ~10%