PARTICLE ACCELERATION & NEUTRINO PRODUCTION IN PNS OUTFLOWS

<u>Outline</u>

- Why study neutrino emission? Plausible astrophysical sources
- Protomagnetars as multi-energy neutrino sources
- Properties of neutrino-driven PNS winds
- Impact of stellar progenitor on EM observables
- Detectability of TeV neutrinos from magnetized PNS outflows
- Summary, model limitations & scope of future work

TeVPA 2024, University of Chicago

Mukul Bhattacharya SCEECS Postdoc @ UW-Madison

Collaborators:

Jose Carpio (U. Nevada, Las Vegas) Kohta Murase (Penn State) Nick Ekanger (Virginia Tech, Tohoku) Shunsaku Horiuchi (Virginia Tech)

August 29, 2024

Why study neutrino emission?

Advantages:

- No charge → not deflected by magnetic fields
 → point back to the source
- Undergo weak interaction → escape the source unimpeded; not absorbed by dust, CMB, EBL

Challenges:

- Require huge detectors, have low statistics
- Large atmospheric background

Credits: Juan Antonio Aguilar & Jamie Yang. IceCube/WIPAC

Astrophysical sources

Neutrino transient candidates can also be:

- Cosmic ray accelerators (see talks by Abhishek, Jose, Shiqi, Luca, ...)
- Gamma-ray emitters (see talks by Regina, Ke, <u>Eduardo</u>, Silvia, ...)
- Accompanied by GWs (see talks by Justin, Maya, <u>Mainak</u>, ...)

PNS as multi-energy neutrino sources

Will focus on protomagnetars as the sources of high-energy (TeV-PeV) neutrinos

Nuclei in neutrino-driven PNS winds

Magnetized CCSNe outflows can generate Fe-like nuclei but not heavier nuclei (likely to come from BNS/BHNS mergers)

Nuclei acceleration & survival

Particles in jet are accelerated via magnetic reconnection

Intermediate phase ($\sigma_0 \sim 10^2 - 10^3$, t $\sim 20-50$ sec): nuclei synthesized in PNS outflow are capable of reaching $\varepsilon_{max} > 10^{20}$ eV and are not photodisintegrated by the high-energy GRB photons ($\tau_{Ay} < 1$)

MB, Horiuchi & Murase 2022

Effect of stellar progenitor on observables

• Natione confering is tell apprited introduced and the conference of the second of the conference of the confe

CR acceleration and neutrino production

Credit: Jose Carpio

Detectability of neutrinos

High jet luminosities in RSGs and BSGs present most promising detection scenario

WR: neutrinos with $E_v > 1$ TeV scarce due to strong IC cooling/attenuation at breakout/earlier times. Fluence too small for detectable signal.

<u>Supergiants</u>: neutrino spectra can reach ~0.1 PeV/~10 PeV for BSG/RSG. Larger $R_* \rightarrow$ less attenuation at late times.

Neutrinos detectable for optimistic BSG scenarios, RSG most promising.

MB, Carpio, Murase & Horiuchi 2023

Detectable events with IceCube-Gen2

High luminosities and large LF for magnetised jets propagating in BSGs and RSGs present most promising scenario for detection with ~few - 10 events above 1 TeV

Expected number of ν_{μ} events in IceCube-Gen2

 E_p^{-2} Injection spectrum

$(B_{dip} [G], P_i [ms])$	BSG	RSG	
(10 ¹⁵ , 2)	4.3×10^{-2}	4.8×10^{-2}	
$(3 \times 10^{15}, 1.5)$	8.9×10^{-1}	1.1	
(10 ¹⁶ , 1)	14	43	

 E_p^{-1} Injection spectrum

$(B_{dip} [G], P_i [ms])$	BSG	RSG	
(10 ¹⁵ , 2)	5.9×10^{-3}	6.3×10^{-3}	
$(3 \times 10^{15}, 1.5)$	5.9×10^{-2}	1.2×10^{-1}	
(10 ¹⁶ , 1)	4.7×10^{-1}	3.2	

<u>BSG</u>: neutrinos detectable only for most energetic PNS outflows

<u>RSG</u>: most optimistic scenario with ~few-10s neutrino events detectable above 1 TeV

Summary

- 1. Nuclei in magnetized PNS outflows ($B_{dip} \sim 10^{14} 10^{16}$ G, P $\sim 1 10$ ms) can interact with jet photons to generate TeV-PeV neutrinos.
- 2. Conditions during intermediate phase ($\sigma_0 \sim 10^{2-3}$, t $\sim 20-50$ sec) ideal for *survival of nuclei*, *acceleration to UHECR energies* and production of gamma-ray emission.
- E_v > 1TeV neutrinos produced by py interactions in magnetised jets: ~*few-10s events can be detected with IceCube-Gen2 for BSG/RSG sources* at D ~ 100 Mpc, WR not as promising.

Future work

- GRMHD simulations to model: particle acceleration, jet structural stability, baryon loading/mixing, time evolution of ejecta properties (also see Eduardo's talk later in this session).
- Impact of neutrinos oscillations on high-energy spectra and detectability from distant sources.
- GW-triggered multi-messenger search strategies for high-energy neutrinos as well as EM emission (also see Mainak's talk later in this session).
- Role of neutrinos from PNS outflows as probes to understand GRB-SNe connection.

BACKUP SLIDES

Jet-cocoon interaction & breakout

• Jet cocoon interaction determines energy deposited onto cocoon and jet breakout criterion.

More energy is deposited into the cocoon for BSG and RSG compared to WR, due to longer t_{bo}

Jet choking criteria

- Central engine has to be active for at least t_{eng} > t_{th} = t_{bo} R_{*}/c. The jet can get choked if:
 (a) engine stops at t < t_{th} before jet exits star, OR (b) jet power is less than minimum requirement
- Gottlieb & Nakar (2021) derived jet breakout criterion:

• $E_{j,iso}/E_{ej} \propto \theta_j^{-4}$, outflows from protomagnetars with $B_{dip} < 3x10^{15}$ G can get choked inside WR stars

Heavy nuclei: r-process

- *Rapid* neutron capture process
- Seed nuclei quickly capture neutrons before decays occur
 ~100 n-captures per second (r-process)
 vs ~few per 10-100 years (s-process)

$$Y_e = \frac{N_p}{N_n + N_p} \qquad \qquad p + \bar{\nu}_e \leftrightarrow n + e^+ \\ n + \nu_e \leftrightarrow p + e^-$$

Rapid n-capture to seed nuclei, followed by $n \rightarrow p$ decay

Image credit: Nick Ekanger

Protomagnetar wind properties

 σ_0 is suppressed significantly due to enhanced mass loss aided by magneto-centrifugal slinging for rapid rotation Feasibility of successful jets turns out to be much higher in outflows with $B_{dip} > 10^{16}$ G and $P_0 < 2$ ms Synthesis of heavier nuclei through r-process is facilitated by combination of low S_{wind} and τ_{exp} in magnetised outflows

SkyNet: Nuclear reaction network

- Inputs are astrophysical environment data:
 - Density (t)
 - Temperature (t)
 - Electron fraction

- Provided $\rho(t)$ and T(t) are sufficiently high, nucleosynthesis yields are primarily determined by Y_e
- ~8,000 nuclei with library of ~100,000 reactions
- Can make precise predictions for elemental abundance distributions

Protomagnetar wind nucleosynthesis

• $\rho(t)$, T(t), Y_e for SkyNet are calculated from initial model conditions

 $t_{start}=0.5 \text{ sec}, t_{bo}$: breakout time, $t_{y,dis}$: time when $\tau_{Ay} \sim 1$, $t_{E,max}$: time when nuclei attain max energy $\sim 10^{21-22} \text{ eV}$

Protomagnetars can undergo some amount of heavy element nucleosynthesis or a 'weak' r-process (1st + 2nd peak)

Ejecta properties from NR simulations

Ejecta properties from NR simulations

Scenario	$S~[{ m k_B~nuc^{-1}}]$	$ au_{ ext{exp}} \; [ext{ms}]$	Y_e	$M_{ m ej} \ [10^{-2} \ M_{\odot}]$	$r_0 \ [km]$	$ heta_{ m ej}$ [°]
BNS (dyn)	5 - 40 (10)	10 - 20 (10)	0.01 - 0.3 (0.15)	0.02 - 5 (0.5) 0 - 500 (500		10 - 60 (30)
BNS (wind)	20(20)	30(30)	0.2 - 0.4 (0.35)	0.1 - 5 (0.2)	$\sim 500~(500)$	$\sim 180~(180)$
BHNS (dyn)	0.5 - 10 (10)	1 - 10 (10)	0.05 - 0.1 (0.1)	0.02 - 10 (2)	$\sim 500~(500)$	~ 30 (30)
BHNS (wind)	10 - 100 (10)	10 - 100 (30)	0.1 - 0.5 (0.3)	0.7 - 8 (7)	200 - 1000 (500)	65 - 180 (180)
CCSN (MR)	5 - 90 (20)	1 - 60 (10)	$0.15 - 0.6 \ (0.35)$	0.3 - 300 (5)	10 - 50 (30)	20 - 45 (30)
CCSN (therm)	50 - 250 (100)	10 - 500 (50)	0.4 - 0.6 (0.45)	$0.07 - 200 \ (0.07)$	10 - 50 (30)	180 (180)

BNS: Just+2015, Lippuner & Roberts 2015, Radice+2018, Zhu+2021, Combi & Siegel 2023, Kiuchi+2022, ...
BHNS: Korobkin+2012, Roberts+2017, Bhattacharya+2019, Fujibayashi+2020, Kyutoku+2021, ...
MR CCSN: Vlasov+2017, Halevi & Mosta 2018, Reichert+2021, Desai+2022, Reichert+2023, ...
Thermal CCSN: Qian & Woosley 1996, Goriely & Janka 2016, Bliss+2018, Witt+2021, Psaltis+2022

Comparing nucleosynthesis yields

Dynamical ejecta and wind in BHNS mergers tend to be slightly more neutron rich compared to BNS mergers. Both can robustly produce 1st, 2nd and 3rd r-process peak elements + actinides, whereas CCSNe primarily generate 1st peak elements.

Rate-weighted abundance distributions

Comparing solar and metal-poor star HD222925 abundance data with event-rate-weighted BHNS+BNS nucleosynthesis yields.

Yields are rescaled to match solar lanthanide (dysprosium, Z=66) abundances.

Kilonova light curves

BHNS mergers show characteristically brighter and longer-lasting emission compared to BNS

Kilonova observability with LSST

LIGO O4 (May 2023) + LSST (~mid 2024) can detect KN signatures from BHNS/BNS.

~7 BNS and ~2 BHNS events/year

A holistic approach: Galactic chemical evolution

Accounting for nucleosynthesis yields and event rates of transient phenomena, GCE provides a holistic view of nucleosynthesis (including r-process) that has occurred over our Galaxy's evolution

Prospects are optimistic!

Why are r/s –process peaks where they are?

- Neutron capture cross section drops off at closed neutron shell locations (N = 50 for first peak, magic number)
- In s- these species are necessarily stable
- In r- they are unstable, and decay from N = 50 shell back to stable line
- At each peak there is this feature

Detailed r-process

- Back-to-back *α* particle captures
- Seeds for heavier nuclei to capture many neutrons up to peaks
- Beta decay back to stability

Two populations?

- Extra relative enrichment for the 'weak' r-process elements compared to solar/higher peak elements
- Two components:
- >lst r process peak elements from mergers
- 2. 'Weak' ~lst r process peak elements from CCSNe

[1] Zhu et al. 2020 [2] Vieira et al. 2022

[1]

Astro Seminar 10/17/22

[1] Siegel et al. 2018
[2] Grichener et al. 2022
[3] Kobayashi et al. 2020 -> Kobayashi and Tominaga (in prep?)

Additional scenarios

Collapsar accretion disks

Common envelope jet supernovae

Failed supernovae

Astro Seminar 10/17/22

[3]

Timescales

- CCSNe collapse timescale: 10 Myr $\rightarrow \sim 1s$
- Merger timescale: > Gyr $\rightarrow \sim 100s$
- Rates:

```
CCSNe - 1 * 10^{5} Gpc^{-3}yr^{-1}
BNS - 10 - 1700 Gpc^{-3}yr^{-1}
BHNS - 7.8 - 140 Gpc^{-3}yr^{-1}
```

[1] Ekanger, Bhattacharya, Horiuchi (in prep)

Typical values

Scenario	S [k _b nuc ⁻¹]	τ_{exp} [ms]	Y_e	$M_{\rm ej}~[M_{\odot}]$	r_0 [km]	$\theta_{\rm ej}$ [°]
BNS (dyn)	10	10	0.15	$5 imes 10^{-3}$	500	30
BNS (wind)	20	30	0.35	2×10^{-3}	500	180
BHNS (dyn)	10	10	0.1	2×10^{-2}	500	30
BHNS (wind)	10	30	0.3	7×10^{-2}	500	180
CCSNe (MR)	20	10	0.35	$5 imes 10^{-2}$	30	30
CCSNe (thermal)	100	50	0.45	7×10^{-4}	30	180

[l]