PARTICLE ACCELERATION & NEUTRINO PRODUCTION IN PNS OUTFLOWS

Outline

- Why study neutrino emission? Plausible astrophysical sources
- \triangleright Protomagnetars as multi-energy neutrino sources
- ØProperties of neutrino-driven PNS winds
- \triangleright Impact of stellar progenitor on EM observables
- Detectability of TeV neutrinos from magnetized PNS outflows
- \triangleright Summary, model limitations & scope of future work

TeVPA 2024, University of Chicago August 29, 2024

Mukul Bhattacharya SCEECS Postdoc @ UW-Madison

Collaborators:

Jose Carpio (U. Nevada, Las Vegas) Kohta Murase (Penn State) Nick Ekanger (Virginia Tech, Tohoku) Shunsaku Horiuchi (Virginia Tech)

Why study neutrino emission?

Advantages:

- No charge \rightarrow not deflected by magnetic fields \rightarrow point back to the source
- Undergo weak interaction \rightarrow escape the source unimpeded; not absorbed by dust, CMB, EBL

Challenges:

- Require huge detectors, have low statistics
- Large atmospheric background

Credits: Juan Antonio Aguilar & Jamie Yang. IceCube/WIPAC

Astrophysical sources

Neutrino transient candidates can also be:

- Cosmic ray accelerators (*see talks by Abhishek, Jose, Shiqi, Luca,* …)
- Gamma-ray emitters (*see talks by Regina, Ke, Eduardo, Silvia,* …)
- Accompanied by GWs (*see talks by Justin, Maya, Mainak,* …)

PNS as multi-energy neutrino sources

Will focus on protomagnetars as the sources of high-energy (TeV-PeV) neutrinos

Nuclei in neutrino-driven PNS winds

Magnetized CCSNe outflows can generate Fe-like nuclei but not heavier nuclei (likely to come from BNS/BHNS mergers)

Nuclei acceleration & survival

Particles in jet are accelerated via magnetic reconnection

Intermediate phase (σ₀ ~ 10²-10³, t ~ 20-50 sec): nuclei synthesized in PNS outflow are capable of reaching ε_{max} > 10²⁰ eV and are not photodisintegrated by the high-energy GRB photons (τ_{Av} < 1)

MB, Horiuchi & Murase 2022

Effect of stellar progenitor on observables

• Nature enfertage is dela popite dentito the lexide on the reussig annul RSG jet ripeared ut and \bm{p} prodigenations, due to long for \bm{d}_{bo} •als_ig_othe et the et this prottill the vertice of the mode of the signals B_{dip} < 10¹⁵ G can get choked inside WR stars

CR acceleration and neutrino production

Credit: Jose Carpio

Detectability of neutrinos

High jet luminosities in RSGs and BSGs present most promising detection scenario

WR: neutrinos with $E_v > 1$ TeV scarce due to strong IC cooling/attenuation at breakout/earlier times. Fluence too small for detectable signal.

Supergiants: neutrino spectra can reach ~0.1 PeV/~10 PeV for BSG/RSG. Larger $R_* \rightarrow$ less attenuation at late times.

 \triangleright Neutrinos detectable for optimistic BSG scenarios, RSG most promising.

MB, Carpio, Murase & Horiuchi 2023

Detectable events with IceCube-Gen2

High luminosities and large LF for magnetised jets propagating in BSGs and RSGs present most promising scenario for detection with ~few - 10 events above 1 TeV

Expected number of ν_μ events in IceCube-Gen2		

 E_n^{-2} Injection spectrum

(B_{dip} [G], P_i [ms])	BSG	RSG		
$(10^{15}, 2)$	5.9×10^{-3}	6.3×10^{-3}		
$(3 \times 10^{15}, 1.5)$ 5.9 $\times 10^{-2}$		1.2×10^{-1}		
$(10^{16}, 1)$	4.7×10^{-1}	3.2		

Ø**BSG:** neutrinos detectable only for most energetic PNS outflows

≻RSG: most optimistic scenario with ~few-10s neutrino events detectable above 1 TeV

Summary

- 1. Nuclei in magnetized PNS outflows ($B_{div} \sim 10^{14}$ 10¹⁶ G, P \sim 1 10 ms) can interact with jet photons to generate TeV-PeV neutrinos.
- 2. Conditions during intermediate phase ($\sigma_0 \sim 10^{2-3}$, t \sim 20-50 sec) ideal for *survival of nuclei*, *acceleration to UHECR energies* and production of gamma-ray emission.
- 3. E_v > 1TeV neutrinos produced by py interactions in magnetised jets: *~few-10s events can be detected with IceCube-Gen2 for BSG/RSG sources* at D ~ 100 Mpc, WR not as promising.

Future work

- GRMHD simulations to model: particle acceleration, jet structural stability, baryon loading/mixing, time evolution of ejecta properties *(also see Eduardo's talk later in this session)*.
- Impact of neutrinos oscillations on high-energy spectra and detectability from distant sources.
- GW-triggered multi-messenger search strategies for high-energy neutrinos as well as EM emission *(also see Mainak's talk later in this session)*.
- Role of neutrinos from PNS outflows as probes to understand GRB-SNe connection.

BACKUP SLIDES

Jet-cocoon interaction & breakout

• Jet cocoon interaction determines energy deposited onto cocoon and jet breakout criterion.

More energy is deposited into the cocoon for BSG and RSG compared to WR, due to longer t_{bo}

Jet choking criteria

- Central engine has to be active for at least $t_{eng} > t_{th} = t_{bo} R*/c$. The jet can get choked if: (a) engine stops at t < t_{th} before jet exits star, OR (b) jet power is less than minimum requirement
- Gottlieb & Nakar (2021) derived jet breakout criterion:

• $E_{j,iso}/E_{ej} \propto \theta_j^{-4}$, outflows from protomagnetars with B_{dip} < 3x10¹⁵ G can get choked inside WR stars

Heavy nuclei: r-process

- *Rapid* neutron capture process
- Seed nuclei quickly capture neutrons before decays occur *~100 n-captures per second (r-process) vs ~few per 10-100 years (s-process)*

$$
Y_e = \frac{N_p}{N_n + N_p} \qquad \qquad p + \bar{\nu}_e \leftrightarrow n + e^+
$$

\n
$$
n + \nu_e \leftrightarrow p + e^-
$$

Rapid n-capture to seed nuclei, followed by $n\rightarrow p$ decay

Image credit: Nick Ekanger

Protomagnetar wind properties

 σ_0 is suppressed significantly due to enhanced mass loss aided by magneto-centrifugal slinging for rapid rotation Feasibility of successful jets turns out to be much higher in outflows with B_{dip} > 10¹⁶ G and P₀ < 2 ms Synthesis of heavier nuclei through r-process is facilitated by combination of low S_{wind} and τ_{exo} in magnetised outflows

SkyNet: Nuclear reaction network

- Inputs are astrophysical environment data:
	- Ø *Density (t)*
	- Ø *Temperature (t)*
	- Ø *Electron fraction*

- Provided $\rho(t)$ and $T(t)$ are sufficiently high, nucleosynthesis yields are primarily determined by Y_e
- ~8,000 nuclei with library of ~100,000 reactions
- Can make precise predictions for elemental abundance distributions

Protomagnetar wind nucleosynthesis

• $\rho(t)$, $T(t)$, Y_e for SkyNet are calculated from initial model conditions

 $t_{start}=0.5$ sec, t_{bo} : breakout time, $t_{y,dis}$: time when τ_{Ay} ^{~1}, $t_{E,max}$: time when nuclei attain max energy ~ 10²¹⁻²² eV

Protomagnetars can undergo some amount of heavy element nucleosynthesis or a 'weak' r-process (1^{st} + 2^{nd} peak)

Ekanger, **MB** & Horiuchi 2022

Ejecta properties from NR simulations

Ejecta properties from NR simulations

BNS: Just+2015, Lippuner & Roberts 2015, Radice+2018, Zhu+2021, Combi & Siegel 2023, Kiuchi+2022, … **BHNS**: Korobkin+2012, Roberts+2017, Bhattacharya+2019, Fujibayashi+2020, Kyutoku+2021, … **MR CCSN**: Vlasov+2017, Halevi & Mosta 2018, Reichert+2021, Desai+2022, Reichert+2023, … **Thermal CCSN**: Qian & Woosley 1996, Goriely & Janka 2016, Bliss+2018, Witt+2021, Psaltis+2022

Comparing nucleosynthesis yields

Dynamical ejecta and wind in BHNS mergers tend to be slightly more neutron rich compared to BNS mergers. Both can robustly produce 1^{st} , 2^{nd} and 3^{rd} r-process peak elements + actinides, whereas CCSNe primarily generate 1st peak elements.

Ekanger, **MB**, Horiuchi 2023

Rate-weighted abundance distributions

Comparing solar and metal-poor star HD222925 abundance data with event-rate-weighted BHNS+BNS nucleosynthesis yields.

Yields are rescaled to match solar lanthanide (dysprosium, Z=66) abundances.

Ekanger, **MB**, Horiuchi 2023

Kilonova light curves

BHNS mergers show characteristically brighter and longer-lasting emission compared to BNS

Ekanger, **MB**, Horiuchi 2023

Kilonova observability with LSST

LIGO O4 (May 2023) + LSST (~mid 2024) can detect KN signatures from BHNS/BNS.

~7 BNS and ~2 BHNS events/year

A holistic approach: Galactic chemical evolution

Accounting for nucleosynthesis yields and event rates of transient phenomena, GCE provides a holistic view of nucleosynthesis (including r-process) that has occurred over our Galaxy's evolution

Prospects are optimistic!

Why are r/s –process peaks where they are?

- Neutron capture cross section drops off at closed neutron shell locations (N $= 50$ for first peak, magic number)
- In s- these species are necessarily stable
- In r- they are unstable, and decay from $N = 50$ shell back to stable line
- At each peak there is this feature

[1]

Detailed r-process

- Back-to-back α particle captures
- Seeds for heavier nuclei to capture many neutrons up to peaks
- Beta decay back to stability

Two populations?

- Extra relative enrichment for the 'weak' r-process elements compared to solar/higher peak elements
- Two components:
- 1. $>1^{st}$ r process peak elements from mergers
- 2. 'Weak' \sim ^{1st} r process peak elements from CCSNe

[1] Zhu et al. 2020 [2] Vieira et al. 2022

[1] Siegel et al. 2018 [2] Grichener et al. 2022 [3] Kobayashi et al. 2020 -> Kobayashi and Tominaga (in prep?)

Additional scenarios

Collapsar accretion disks

Common envelope jet supernovae

Failed supernovae

Astro Seminar $10/17/22$ 56

[3]

Timescales

- CCSNe collapse timescale: 10 Myr $\rightarrow \sim 1s$
- Merger timescale: $>$ Gyr $\rightarrow \sim 100s$
- Rates:

```
CCSNe-1 * 10^5 Gpc^{-3}yr^{-1}\overline{BNS - 10 - 1700} Gpc^{-3} yr^{-1}BHNS – 7.8 – 140 Gpc^{-3}yr^{-1}
```
[1] Ekanger, Bhattacharya, Horiuchi (in prep)

Typical values

