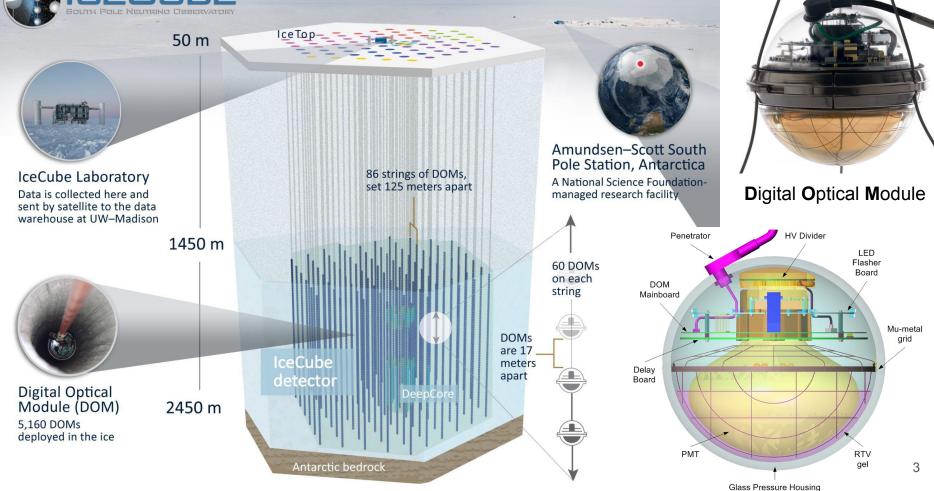


Characterization of the Diffuse Astrophysical Neutrino Spectrum with IceCube All-Flavor Starting Events

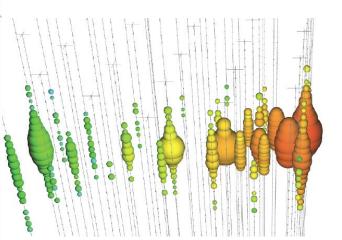
TeV Particle Astrophysics Chicago 2024

Vedant Basu and Aswathi Balagopal V.


On behalf of the IceCube Collaboration

Outline

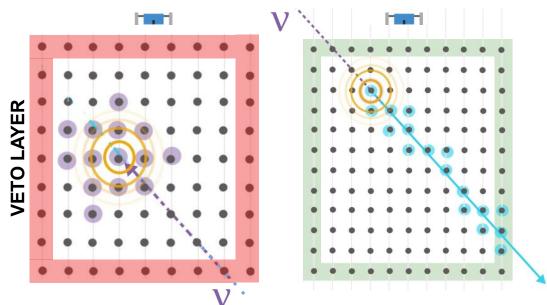
- The Medium Energy Starting Event (MESE) event selection
- Measurement of the Diffuse Astrophysical Neutrino Flux
- Measurement of the Astrophysical Neutrino Flavor Composition
- IC190331:The Highest Energy IceCube Event
- Summary



IceCube Event Morphologies

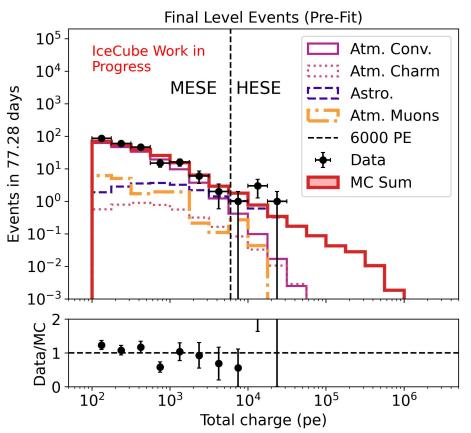
Tracks

Cascades



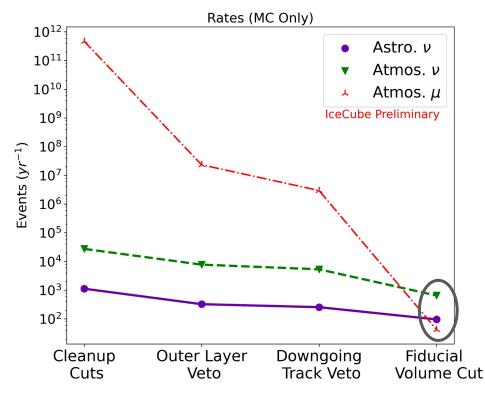
 $\nu_{\mu} + X \rightarrow \mu^{-} + Hadrons$ Energy Res. : 0.3 in Log $\frac{E}{TeV}$ Angular Res. : 0.3°
Ref.

 $\nu_e + X \rightarrow e^- + Hadrons \ \nu_\tau + X \rightarrow \tau^- + Hadrons$ $\nu_l + \mathbf{X} \rightarrow \nu_l + \text{Hadrons} \quad \tau^- \rightarrow \nu_\tau + \dots$ Energy Res. : 15%@100TeV Decay Length : 50m/PeV Angular Res. : 4°


IceCube Starting Events

- Identify neutrinos with interaction vertex contained within the detector (Starting Events)
- Sensitive to all neutrino flavours with different event topologies, from the entire sky
- Published analyses using starting events include HESE (High Energy Starting Events) and ESTES (Enhanced Starting Track Event Selection)

Medium Energy Starting Events (MESE)

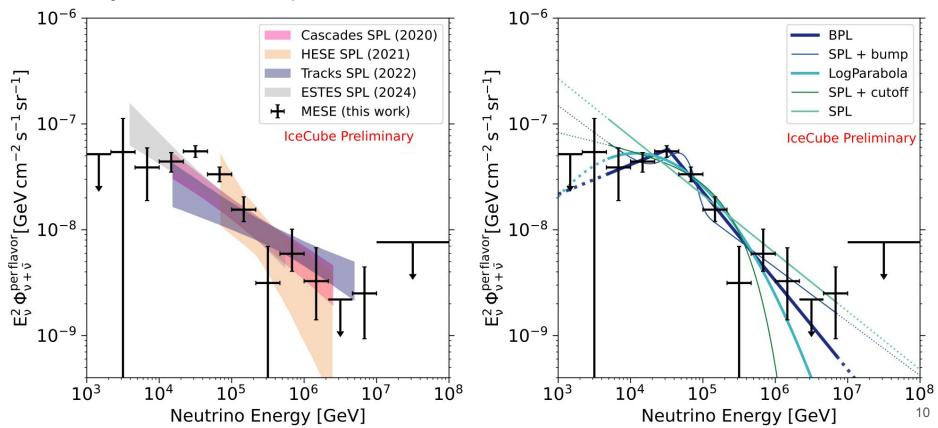

- Extend HESE concept to lower energies, while retaining high signal purity, with additional veto steps
- Neutrinos of all flavors and the whole sky included in this dataset with events having energy > 1 TeV
- Use the dataset to measure astrophysical neutrino spectrum and astrophysical flavor ratio

Event Selection

Cascades. $0.6 < \cos(\theta) < 0.8$ Cascades, $0.6 < \cos(\theta) < 0.8$ 600 600 Downgoing Downgoing L4: **Downgoing** 400 400 0=750 pe 0=750 pe O⇔500 pe Track Veto, link 200 200 Y (m) (m) Z isolated hits 0 with muon Z -200 -200 hypotheses -400-400-600 -400 -200 -600 -600 -400 -200 Ó 200 400 600 200 400 0 600 X (m) X (m) Fitted L5: Fiducial Volume Track Veto pulses L3: Outer Layer Scaling for dim Veto, reject events, veto hits closer atmospheric to the reconstructed True muons starting vertex. Muon outside detector Track

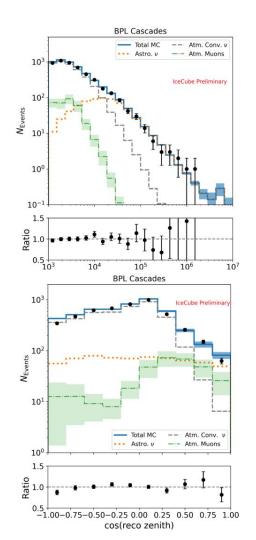
Expected Rates

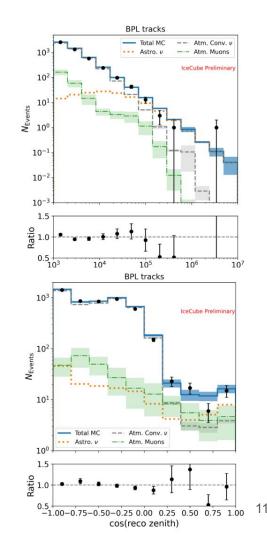
Astro Flux model: Φ_{astro} = 2.06, γ_{astro} = 2.46 (from 2-year MESE analysis) Atm. Flux model: GaisserH4a +SIBYLL 2.3


Rates (yr ⁻¹) (MC)	Astro. v	Atm. v	Atm. µ
Total	95.3	644.3	40.9

Outline

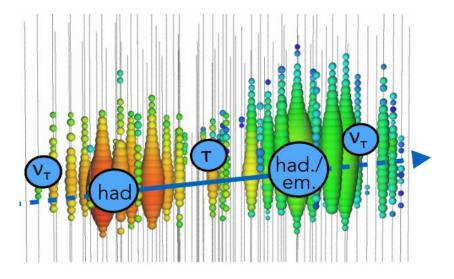
- The Medium Energy Starting Event (MESE) event selection
- Measurement of the Diffuse Astrophysical Neutrino Flux
- Measurement of the Astrophysical Neutrino Flavor Composition
- IC190331:The Highest Energy IceCube Event
- Summary


Observed neutrino spectrum


Best fit model: Broken Power Law, followed by SPL+ Bump and then LogParabola. We reject SPL with respect to BPL with 4.7σ with MESE

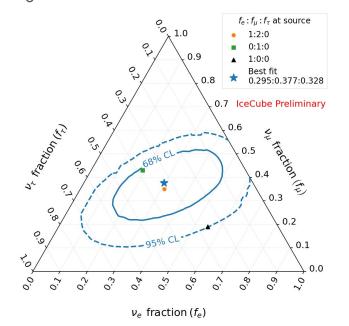
Data-MC comparison

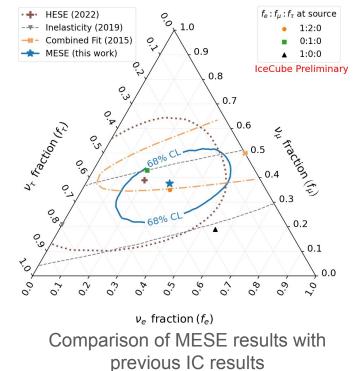
Event Counts (11.4 yr)	Expected	Data
Cascades	4947.7	4949
Tracks	4859.9	4908
Total	9807.6	9857


Outline

- The Medium Energy Starting Event (MESE) event selection
- Measurement of the Diffuse Astrophysical Neutrino Flux
- Measurement of the Astrophysical Neutrino Flavor Composition
- IC190331:The Highest Energy IceCube Event
- Summary

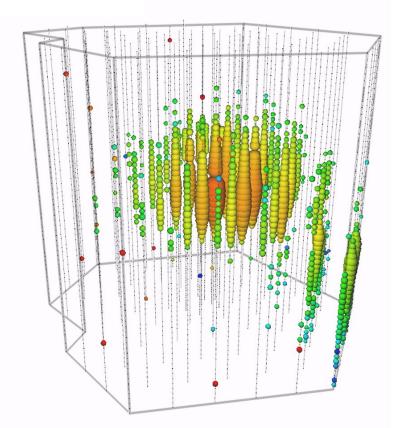
Tau neutrino identification


Selection strategy focused on double-cascade identification

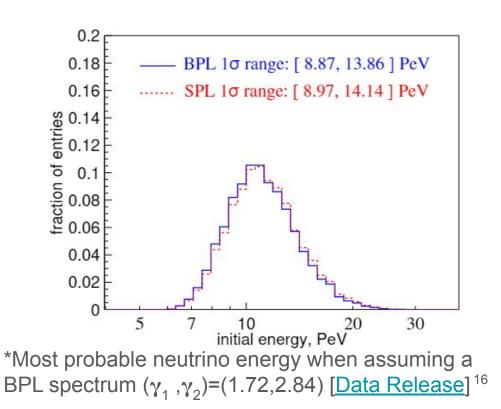

- Perform likelihood-based reconstruction
- Additional cuts to select double cascades based on reconstructed energy in both cascades and their relative magnitudes
- Retain events that pass the cuts with tau-decay length > 10 m and energy > 30 TeV as double cascades
- Remaining events are cascades or tracks (based on a DNN)

Measurement of the flavor ratio

- BPL assumed as the flux model for the measurement of the flavor ratio
- IceCube obtains a closed 1σ contour for the first time
- v_{e} -only at source (neutron decay) excluded with 94.8% CL


14

Outline

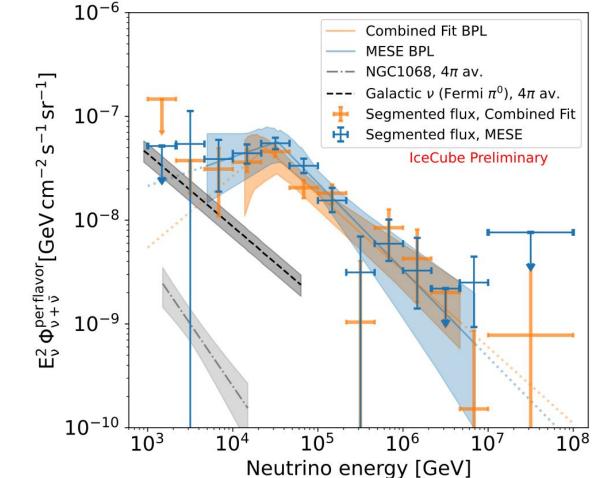

- The Medium Energy Starting Event (MESE) event selection
- Measurement of the Diffuse Astrophysical Neutrino Flux
- Measurement of the Astrophysical Neutrino Flavor Composition
- IC190331:The Highest Energy IceCube Event
- Summary

IceCube's Highest Energy Event .

Event 132379/15947448-2 IceCube Preliminary Time 2019-03-31 06:55:43 UTC

- Starting Track in MESE sample,
 reconstructed energy 4.8 PeV
- Primary neutrino energy*:11.4 PeV

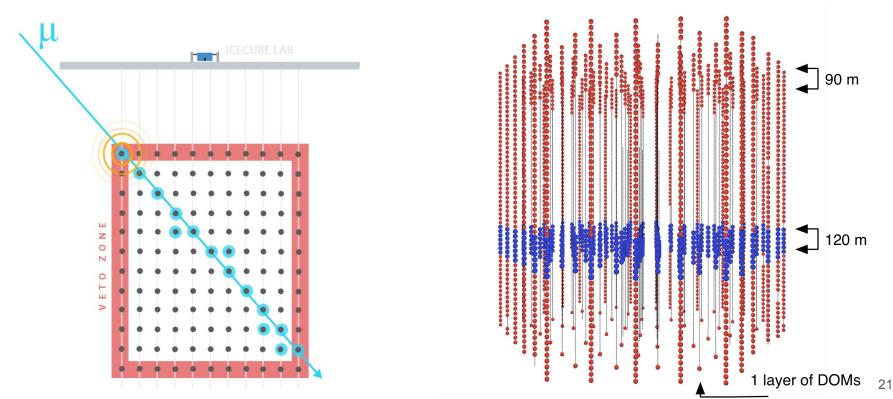
Outline

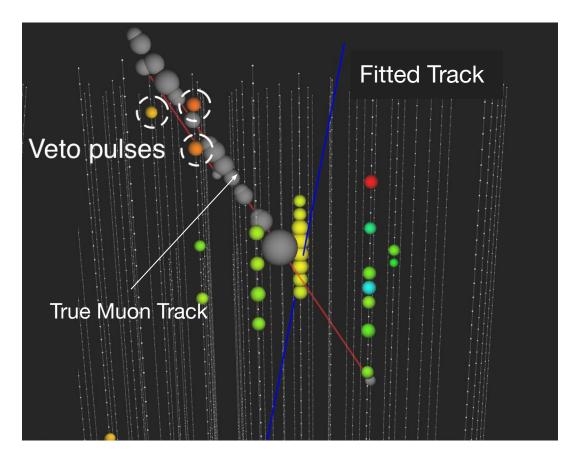

- The Medium Energy Starting Event (MESE) event selection
- Measurement of the Diffuse Astrophysical Neutrino Flux
- Measurement of the Astrophysical Neutrino Flavor Composition
- IC190331:The Highest Energy IceCube Event
- Summary

Summary

- A study of starting events with 11.4 years of IceCube data reveals evidence for features in the spectrum of astrophysical neutrinos beyond the single power law.
- IceCube observes a steeper spectrum at higher energies, while below ~30 TeV a harder spectrum is measured.
- Flavor ratio of extragalactic neutrinos measured to be consistent with SM, with a closed contour at 68% CL.
 We reject production of cosmic neutrinos via neutron-decay with 94.8% CL.
- In addition, a muon neutrino with energy 11. 4 PeV has been observed, IceCube's highest energy event to date

Backup

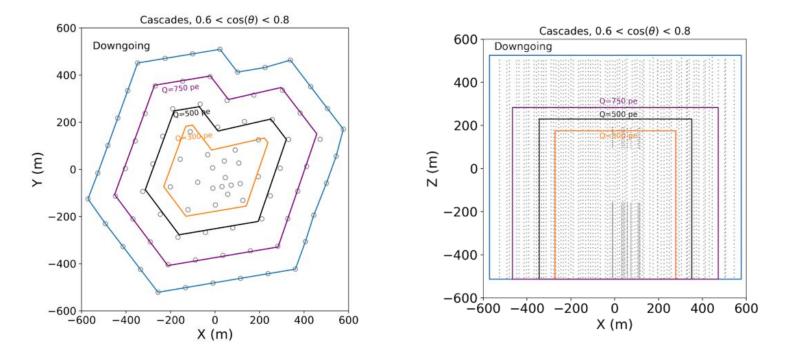

IceCube Fits


20

L3: Outer Layer Veto

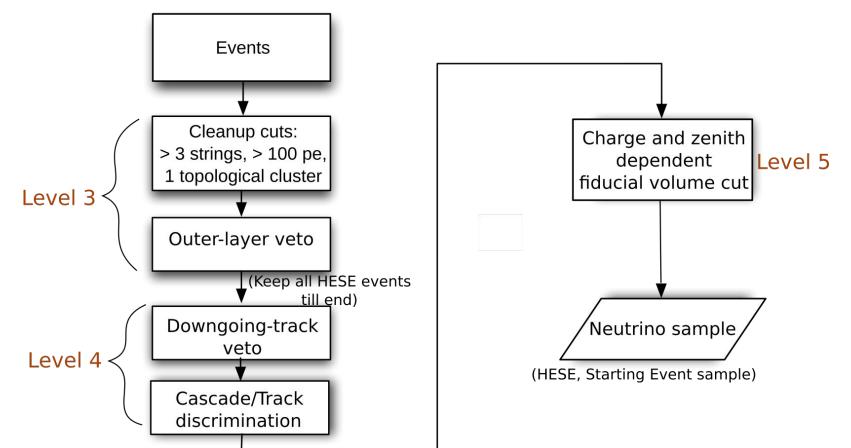
Outer Layer Veto helps reject events starting outside detector, mostly background muons

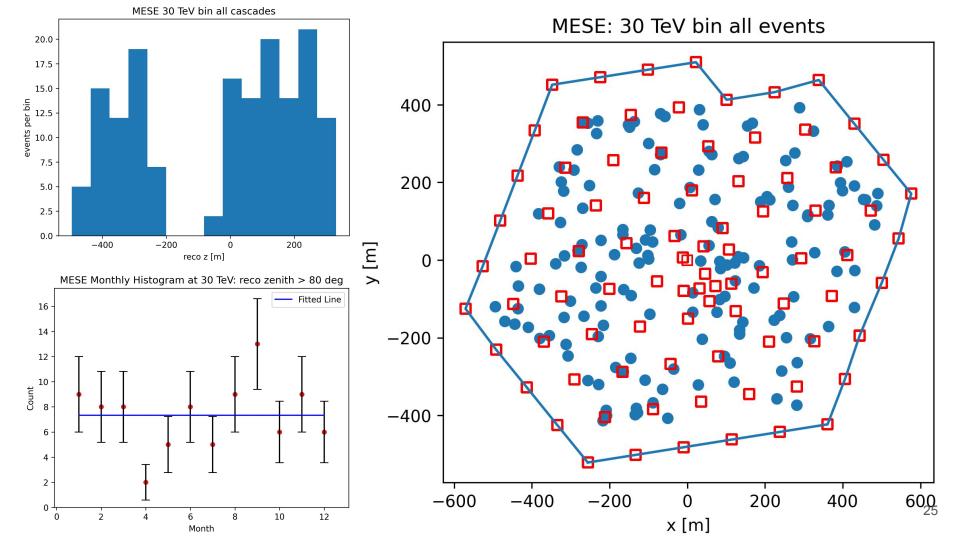
L4: Downgoing Track Veto

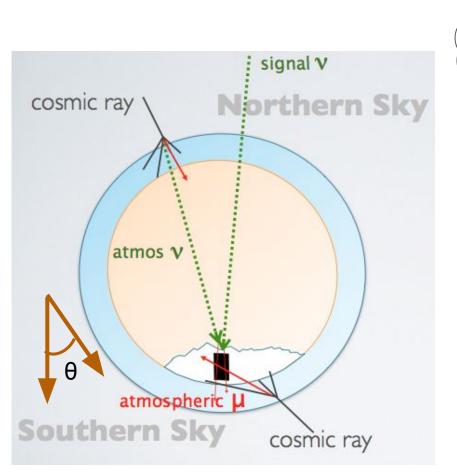


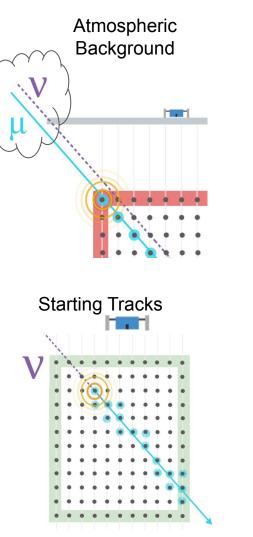
 Post outer-layer veto, muon background dominated by lower energy muons sneaking through veto layer

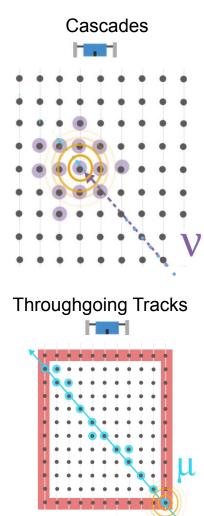
 Try to associate isolated boundary hits with track hypotheses to veto dim muons


L5: Fiducial Volume Scaling


- Downgoing track veto less efficient as muon energy decreases
- For dim events, search for hits closer to the reconstructed vertex
- Zenith and morphology dependent cuts


Event Selection


We select starting cascades and starting tracks from the whole sky and with energies above 1 TeV



Event Selections

26

Cosmic Messengers

black

holes

AGNs, SNRs, GRBs...

ł

Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

*

Earth

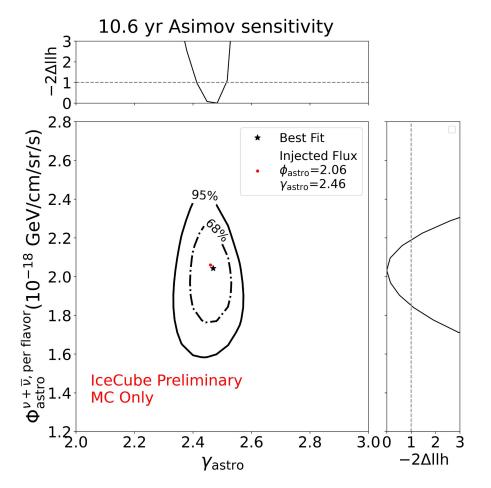
air shower

Neutrinos

0

They are weak, neutral particles that point to their sources and carry information from deep within their origins.

Cosmic rays

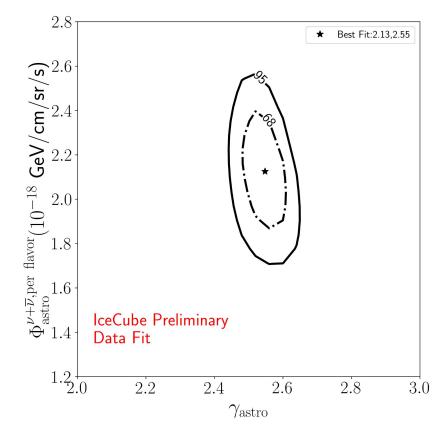

0

They are charged particles and are deflected by magnetic fields.

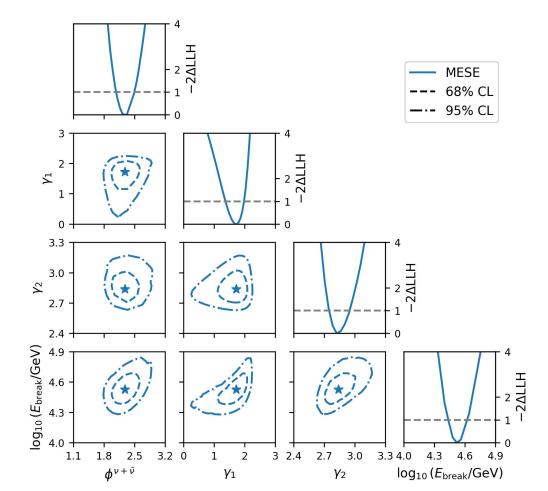
1

Fig: J. Aguilar and J. Yang for the IceCube Collaboration

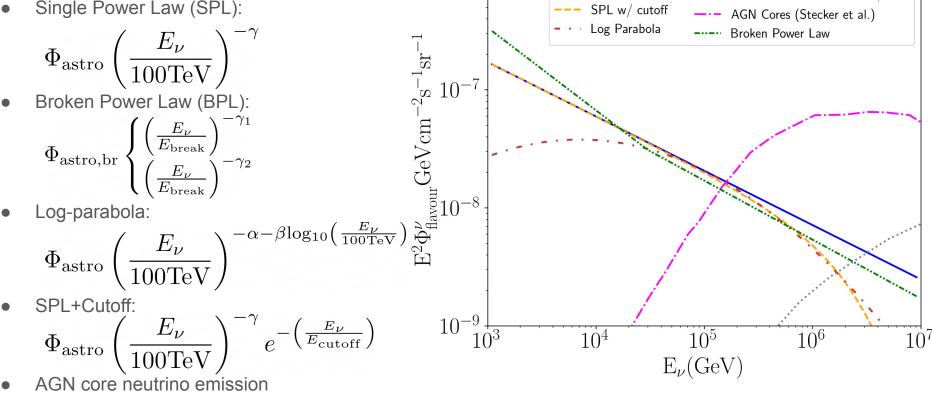
Single Power Law (SPL) Sensitivity


Physics parameters: Assuming Single Power Law Flux (SPL)

- $\Phi_{astro}, \gamma_{astro}$: The normalization and spectral index
- Φ_{μ} : Scaling factor for the atmospheric muon flux assuming GaisserH4a + SIBYLL2.3c
- Φ_{conv},Φ_{prompt}: Atmospheric neutrino flux normalisation


Systematics modelled using the SnowStorm method (M.G. Aartsen et al JCAP10(2019)048)

SPL Fit Contour


BPL Spectral Indices

Models tested

Astrophysical Flux Models:

Single Power Law (SPL):

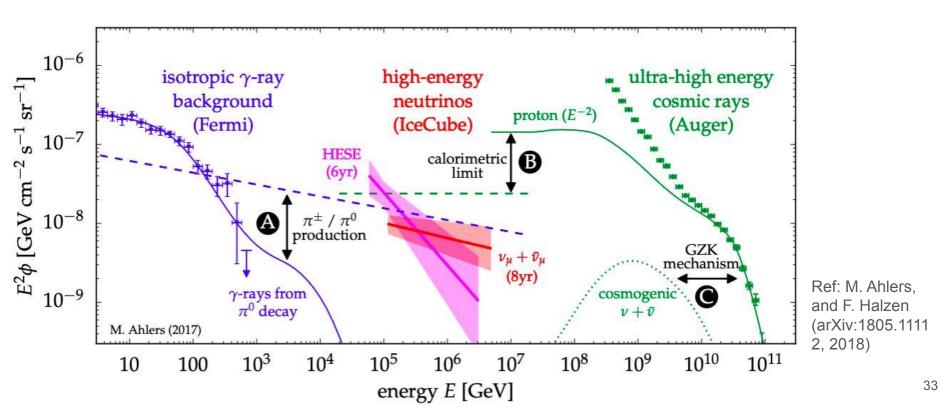
 10^{-6}

Diffuse Flux Models (Pre-Fit)

•••••• BL-Lac (Padovani et al.) $\frac{F_{\nu}}{F_{\nu}} = 0.3$

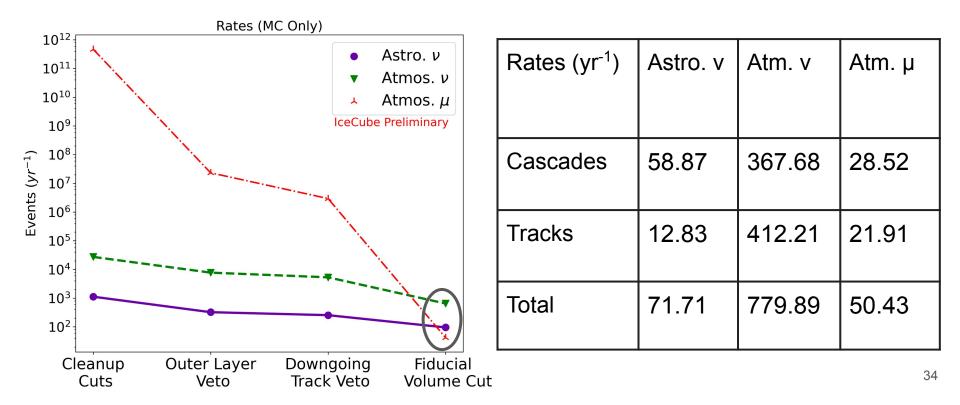
SPL

- AGN core neutrino emission
- Neutrino emission from BLLac objects

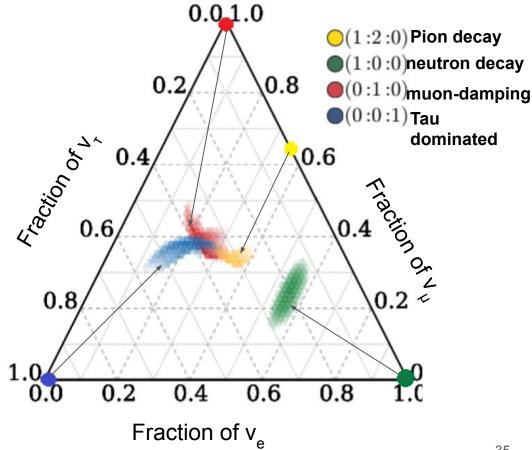

Fit results

- Broken Power Law is the best fit model, followed by SPL+ Bump and then Log Parabola flux.
- We reject single power law by 4.7σ with MESE

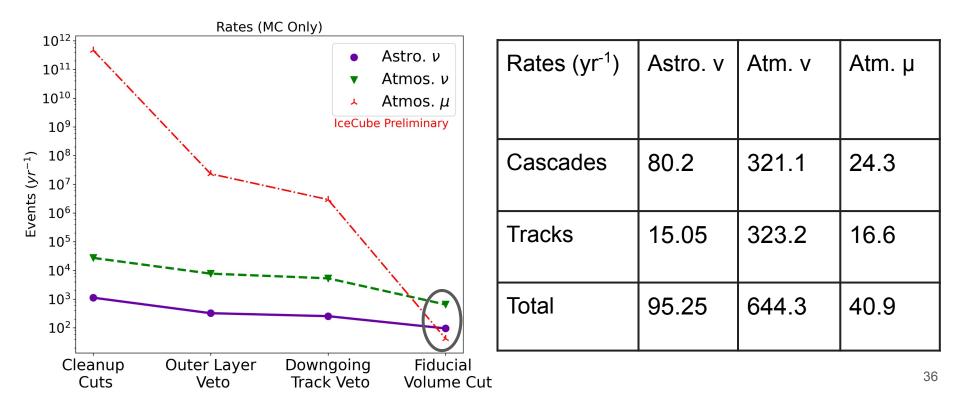
	Flux Model	Fit Parameters		$-2 \Delta \log \mathcal{L}$
Single Power Law (SPL)		$\Phi^{\nu+\bar{\nu}}/C$	$= 2.13^{+0.18}_{-0.17}$	0
	$\left[\Phi^{ u+ar{ u}} (rac{\mathrm{E}_{ u}}{100\mathrm{TeV}})^{-\gamma} ight]$	γ	$= 2.55^{+0.04}_{-0.04}$	
	SPL + AGN	$\Phi^{\nu+\bar{\nu}}/C$	$= 2.55^{+0.04}_{-0.04}$ $= 2.13^{+0.18}_{-0.17}$	0
$\left[\Phi^{ u+ar{ u}} (rac{\mathrm{E}_ u}{\mathrm{100 TeV}})^{-\gamma} ight]$	$\left[\Phi^{ u+ u} (rac{\mathbf{E}_{ u}}{100\mathrm{TeV}})^{-\gamma} ight]$	γ	$= 2.55^{+0.04}_{-0.04}$	
		Φ_{model}	$=0^{+0.002}$	
	SPL + BLLac	$\Phi^{\nu+\bar{\nu}}/C$	$=2.13^{+0.18}_{-0.17}$	0
$\left[\Phi^{ u+ar{ u}}\left(rac{\mathrm{E}_{ u}}{100\mathrm{TeV}} ight)^{-2} ight.$	$\left[\Phi^{ u+ u} (rac{\mathbf{E}_{ u}}{100\mathrm{TeV}})^{-\gamma} ight]$	γ	$= 2.55^{+0.04}_{-0.04}$	
		Φ_{model}	$=0^{+0.002}$	
	SPL + Cutoff	$\Phi^{\nu+\bar{\nu}}/C$	$= 3.975^{+1.14}_{-1.32}$	1.8
$\left[\Phi^{ u+ar{ u}}(\Lambda)^{-\gamma} e^{rac{-{ m E}_ u}{{ m E}_{ m cutoff}}} ight]$		γ	$= 2.16^{+0.23}_{-0.16}$	
	$\Lambda = rac{\mathrm{E}_{m{ u}}}{100\mathrm{TeV}}$	$\log_{10}(\frac{E_{cutoff}}{GeV})$	$= 5.40^{+0.51}_{-0.23}$	
	$\begin{bmatrix} \text{Log Parabola} \\ \left[\Phi^{\nu + \bar{\nu}} \left(\frac{\mathbf{E}_{\nu}}{100 \text{ TeV}} \right)^{-\alpha_{\text{LP}} - \beta_{\text{LP}} \log_{10} \left(\frac{\mathbf{E}_{\nu}}{100 \text{ TeV}} \right)} \end{bmatrix}$	$\Phi^{\nu+\bar{\nu}}/C$	$= 2.58^{+0.26}_{-0.26}$	18.84
$\left \Phi^{\nu + \bar{\nu}} \left(\frac{\mathrm{E}_{\nu}}{100 \mathrm{TeV}} \right)^{-\alpha_{\mathrm{LP}} - \beta_{\mathrm{LP}} \mathrm{le}} \right \right $	$\left[\Phi^{\nu+\bar{\nu}}\left(\frac{\mathbf{E}_{\nu}}{100\text{TeV}}\right)^{-\alpha_{\rm LP}-\beta_{\rm LP}\log_{10}\left(\frac{\mu_{\nu}}{100\text{TeV}}\right)}\right]$	α_{LP}	$=2.67^{+0.13}_{-0.06}$	
		$\beta_{ m LP}$	$= 0.36^{+0.10}_{-0.08}$	
	SPL + Bump	$\Phi^{\nu+\bar{\nu}} / C$		22.3
$\left[\Phi^{\nu+\bar{\nu}} \left(\frac{\mathbf{E}_{\nu}}{100 \text{ TeV}}\right)^{-\gamma} + \Phi_{\text{bump}} e^{\frac{-(\mathbf{E}_{\nu})^{2}}{2\epsilon}}\right]$	$\left[\Phi^{\nu+\bar{\nu}}(\frac{E_{\nu}}{100\text{TeV}})^{-\gamma} + \Phi_{\text{bump}}e^{\frac{-(E_{\nu}-E_{\text{bump}})^{-2}}{2\sigma_{\text{bump}}^{2}}}\right]$	γ	$= 2.51^{+0.05}_{-0.07}$ $= 4.30^{+0.13}$	
		$\log_{10}(\frac{E_{\rm bump}}{{ m GeV}})$	$=4.30^{\pm0.13}$	
			$=4.42^{+0.12}_{-0.13}$	
		$\Phi_{\rm bump} / C$	$=24.79^{+13.55}_{-7.95}$	
1	Broken Power Law	$\Phi^{\nu+\bar{\nu}}/C$	$=2.28^{+0.22}_{-0.20}$	27.3
	$\left[\Phi^{\nu+\bar{\nu}}\left(\frac{\mathbf{E}_{\nu}}{\mathbf{E}_{\text{break}}}\right)^{-\gamma_{\text{BPL}}}\left(\frac{\mathbf{E}_{\text{break}}}{100\text{ TeV}}\right)^{-\gamma_{1}}\right]$	γ_1	$= 1.72^{+0.26}_{-0.35}$	
$\gamma_{ m BPL} = \left\{ egin{array}{c} \gamma_1 ({ m E}_ u < E) \ \gamma_2 ({ m E}_ u > E) \end{array} ight.$	$\gamma_{ ext{BPL}} = \left\{ egin{array}{l} \gamma_1 \left(ext{E}_{ u} < E_{ ext{break}} ight) \ \gamma_2 \left(ext{E}_{ u} > E_{ ext{break}} ight) \end{array} ight.$	γ_2	$= 2.84^{+0.11}_{-0.09}$	
		$\log_{10}(\frac{E_{break}}{GeV})$	$= 4.52_{-0.09}^{+0.11}$	


32

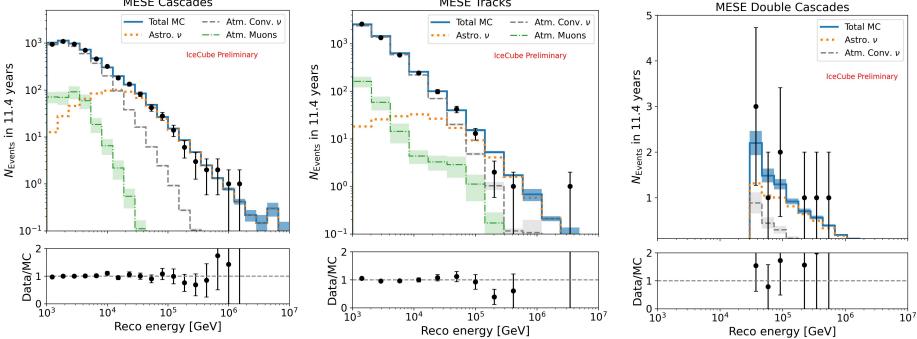
Energy density of high energy neutrinos similar to γ-ray flux, and Ultra High Energy Cosmic Rays (UHECRs) -> could indicate related production mechanisms


Expected Rates

Astro Flux model: $\Phi_{astro,}$ =2.28, γ_1 = 1.72, γ_2 = 2.84, Log(E_{break}/GeV)= 4.52 (Best Fit Flux Model) Atm. Flux model: GaisserH4a +SIBYLL 2.3


Motivation: Flavour Studies

- With tracks, cascades and tau discrimination, we can study the flavour composition of cosmic neutrinos.
- These observations help constrain the source production mechanisms and possible new physics


Expected Rates

Astro Flux model: Φ_{astro} = 2.06, γ_{astro} = 2.46 (from 2-year MESE analysis) Atm. Flux model: GaisserH4a +SIBYLL 2.3

Energy distributions

- Selected 4960 cascades, 4919 tracks and 9 double cascades
- MC expectations with best fit BPL model
- Shown here: distributions for the flavor measurement*

*cascade and track distributions for spectral measurement looks similar