

A Combined Fit of Ultra-High-Energy Cosmic Rays and Neutrinos from Pierre Auger and IceCube Observatories

Marco Muzio¹, Tianlu Yuan², Lu Lu²

1. Penn State University 2. University of Wisconsin-Madison

Source

Intergalactic medium 10^-6 protons / cm3 400 photons / cm3 Interstellar medium 1 proton / cm3 Earth atmosphere 7x10^20 proton / cm3

Neutrino production: proton and matter targets

Active galactic nucleus

UHE neutrinos: a smoking gun signature

- Photopion produced neutrinos have 1/20 the primary energyper-nucleon
- CMB target: 10^{19.7} eV energy threshold => EeV energy neutrinos
- CIB target: 10¹⁸ eV energy threshold => O(10 PeV) neutrinos
 - Ambient photons in source can also serve as target

Neutrinos gateway to UHECR puzzle?

Energy generation rates are comparable among three messengers: common origin?

Neutrinos gateway to UHECR puzzle?

Data: Energy generation rates are comparable among three messengers

IceCube data at the highest energies

- Combined fit
 - Through-going tracks and contained cascades
 - More see Zoe Rechav's talk (Wednesday 4pm)

- MESE

- Starting tracks and contained cascades
- More see Vedant Basu's (Monday 5:15pm)

PEPE

 Partially contained cascades

New round of combined fits suggest a broken power law feature with a soft high-energy component

Uncertainties are at large beyond 710 PeV

The highest energy neutrinos

• 3 events with neutrino energy > 5 PeV over a decade of data taking

Muon energy: 4.5±1.2 PeV Nu energy ~ 9 PeV Deposited energy: 6.05 ±0.72 PeV Nu energy ~6.3 PeV

Nu energy ~11.4±2.5 PeV

The highest energy neutrinos

Can we make a more conclusive statement on 10 PeV+ neutrino flux with all available datasets?

• 3 events with neutrino energy > 5 PeV over a decade of data taking

Muon energy: 4.5±1.2 PeV Nu energy ~ 9 PeV Deposited energy: 6.05 ±0.72 PeV Nu energy ~6.3 PeV

Nu energy ~11.4±2.5 PeV

Combining high-energy neutrino samples

HESE (PEPE independently x2 effective area)

Northern track (through-going)

Hybrid air shower detections from the Pierre Auger Observatory (2004 to now)

The highest energy cosmic rays

Observables: cosmic ray flux; mass composition via Xmax

CR Source Model

- Unger-Farrar-Anchordoqui model (UFA, 2015 PRD):
 - 1. Inject CRs into source environment
 - 2. CRs processed by *photon* interactions
 - 3. CRs escape source environment
 - 4. CRs propagate to Earth
- Accounts for observed spectrum (>10^{17.5} eV) & composition (>10^{17.8} eV)

Joint UHECR-neutrino likelihood maximization

- High energy neutrinos**
 - Poisson distribution in energyzenith-flavor bins >5 PeV**
 - Non-observation of neutrinos
 >15 PeV**

- Ultra high energy cosmic rays
 - Flux >10^{17.5} eV
 - Full Xmax distributions >10^{18.6} eV**
 - Rather than fitting only first two moments

****NEW THIS ANALYSIS**

$\ln \mathcal{L} = \ln \mathcal{L}_{\rm UHECR} + \ln \mathcal{L}_{\nu}$

Assumptions: standard sources, SFR source evolution, mixed composition injection, Sibyll2.3d hadronic interaction model,

Auger energy scale shifted by +1 σ , Xmax scale by -1 σ

Implication: 10-100 PeV p-gamma bump in diffuse nu from UHECR sources

15

Current/future neutrino experiment landscape

IceCube-Gen2 optical projection (10 yrs)

IceCube-Gen2 optical+radio projection (10 yrs)

Conclusion

- Performed joint fit to UHECR spectrum & Xmax data along with >5 PeV neutrinos
- > 10 PeV neutrino spectrum predicted by realistic UHECR source models

 \odot Production mainly in-source photon fields \odot Secondary through UHECR x CIB

- Hints of the 10 PeV neutrino recovery from IceCube & KM3Net?
- Next-generation detectors required to robustly detect recovery

 \odot Smoking gun source identification

Km3net – an intriguing event

See ICHEP talk from Paschal Coyle

Potentially with muon energy >> 10 PeV. Background probability, angular and energy uncertainties under study

