The effect of the LMC on nonstandard interactions on dark matter direct detection experiments

Javier Reynoso Nassim Bozorgnia **Marie-Cécile Piro**

Introduction

Direct detection terrestrial experiments

Particle physics

Astrophysics

Direct detection experiments Event rate, astro components

$$v_{\min} = \sqrt{\frac{m_T E_R}{2\mu_{\chi T}}}$$

Direct detection limits

$$\eta(v_{\min}) = \int_{v > v_{\min}} d^3v \, \frac{f(\overrightarrow{v}, t)}{v}$$

 $f(\overrightarrow{v},t)$

Usual assumption:

Maxwell Boltzmann distribution

Dark Matter velocity distribution

Auriga cosmological simulations

The LMC dominates the high speed tail of the speed distribution

$$\eta(v_{\min}) = \int_{v > v_{\min}} d^3v \, \frac{f(\overline{v}, t)}{v}$$

Non standard interactions

In the case of generalized non standard interactions

$$\frac{d\sigma_T}{dE_R} = \frac{d\sigma_1}{dE_R} \frac{1}{v^2} + \frac{d\sigma_2}{dE_R}$$

 $h(v_{\min})$ is a new velocity integral defined as:

$$h(v_{\min}) = \int_{v > v_{\min}} d^3 v \ v f(\overrightarrow{v}, t)$$

The rate can be expressed as

Non relativistic effective field theory (NREFT)

Parametrize all possible DM - nucleon interactions using the set of operators $\{O_i\}$

Operator	Scaling factor
$\mathcal{O}_1 = 1_{\chi} 1_N$	1
$\mathcal{O}_3 = i ec{S}_N \cdot \left(rac{ec{q}}{m_N} imes ec{v}_\perp ight)$	$q^2 v_\perp^2, \ q^4$
$\mathcal{O}_4 = ec{S}_\chi \cdot ec{S}_N$	1
$\mathcal{O}_5 = i ec{S}_\chi \cdot \left(rac{ec{q}}{m_N} imes ec{v}_\perp ight)$	$q^2 v_\perp^2, \ q^4$
$\mathcal{O}_6 = \left(ec{S}_\chi \cdot rac{ec{q}}{m_N} ight) \left(ec{S}_N \cdot rac{ec{q}}{m_N} ight)$	q^4
${\cal O}_7=ec{S}_N\cdotec{v}_\perp$	v_{\perp}^2
$\mathcal{O}_8 = ec{S}_\chi \cdot ec{v}_\perp$	v_{\perp}^2, q^2
$\mathcal{O}_9 = i ec{S}_\chi \cdot \left(ec{S}_N imes rac{ec{q}}{m_N} ight)$	q^2
$\mathcal{O}_{10}=iec{S}_N\cdotrac{ec{q}}{m_N}$	q^2
$\mathcal{O}_{11}=iec{S}_{\chi}\cdotrac{ec{q}}{m_N}$	q^2
$\mathcal{O}_{12} = ec{S}_\chi \cdot \left(ec{S}_N imes ec{v}_\perp ight)$	v_{\perp}^2, q^2
$\mathcal{O}_{13} = i \left(ec{S}_\chi \cdot ec{v}_\perp ight) \left(ec{S}_N \cdot rac{ec{q}}{m_N} ight)$	$q^2 v_\perp^2,q^4$
$\mathcal{O}_{14} = i \left(ec{S}_\chi \cdot rac{ec{q}}{m_N} ight) \left(ec{S}_N \cdot ec{v}_\perp ight)$	$q^2 v_\perp^2$
$\mathcal{O}_{15} = -\left(ec{S}_{\chi} \cdot rac{ec{q}}{m_N} ight)\left(\left(ec{S}_N imes ec{v}_{\perp} ight) \cdot rac{ec{q}}{m_N} ight)$	$q^4 v_\perp^2,q^6$

 $\frac{d\sigma_T}{dE_R} = \frac{2m_T}{v^2(2J+T)}$

 \mathcal{O}_1 corresponds to the standard spin-independent interaction but this is not true for the other operators

Contains momentum dependent and velocity dependent interactions

$$\frac{1}{1} \left[\sum_{k=M,\Sigma',\Sigma''} R_k(v_{\perp}^2,q^2) W_k(q^2) + \frac{q^2}{m_N^2} \sum_{k=\Phi'',\tilde{\Phi}',\Delta} R_k(v_{\perp}^2,q^2) W_k(q^2) \right] \right]$$

Isoscalar interactions $c_i^p = c_i^n$

$$\sigma_{\chi p} \equiv \frac{\left(c_i^p \mu_p\right)^2}{\pi}$$

Experiments

We focus on different target materials

SuperCDMS (Germanium)

Experiment	Exposure $[kg \cdot d]$	Energy threshold [keVnr]
DarkSide-20k	$3.65 imes10^7$	30
Darwin	$7.3 imes10^7$	1
NEWS-G	20	0.01
SuperCDMS	$1.6 imes 10^4$	0.04

- Darwin (Xenon)
- DarkSide-20k (Argon)
- **NEWS-G (Neon + methane)**

• We are also working to provide results for other experiments: SBC (Argon) and DarkSphere (Helium)

Preliminary

•

Inelastic scattering

Dark matter scattering to heavier mass state

Results Inelastic scattering

Preliminary

SuperCDMS

Conclusions

- experiments using the Auriga simulations
- interactions
- We have used different target materials
- We have found that the LMC has a greater impact on lower
- We have found that velocity-dependent operators tend to have greater impact when the LMC is considered in the velocity distribution (e.g \mathcal{O}_5 , \mathcal{O}_8 for Ar and Ne)
- In the case of inelastic scattering, the presence of the LMC improves the sensitivity of the detector for greater values of the mass splitting parameter δ

• We have studied the impact of the LMC on near-future direct detection experiments

• We have extended the standard SI (SD) interactions and consider non-standard

$$\mathcal{L}_{i}(N_{p,i}|N_{o,i}) = \frac{(b_{i} + N_{p,i})^{N_{o,i}} e^{-(b_{i} + N_{o,i})}}{N_{o,i}!}$$

NEWS-G: 1.67 kg⁻¹ d⁻¹ keV⁻¹ for the differential background with 0 expected events

SuperCDMS: $10 \text{ kg}^{-1} \text{ yr}^{-1} \text{ keV}^{-1}$ differential background rate with 0 expected events

 $+N_{\mathrm{p},i})$

Poisson likelihood

- DarkSide-20k: 0 events, 1 ν induced background event
- **Darwin: 1 observed event and 2.37 background events**

