

Status of the ALPACA/ALPAQUITA experiment

Yusaku Katayose (Yokohama National University) for the ALPACA Collaboration

TeVPA 2024 Chicago USA, Aug. 26th 2024

sub-PeV γ -Ray Astronomy(2019 \sim)

- ✓ Search for Galactic PeV cosmic-ray accelerators, <u>PeVatrons</u>
- Tibet ASγ, HAWC, and LHAASO in the northern hemisphere

Tibet AS γ Collaboration, PRL 126, 141101 (2021)

/(°)

LHAASO Collaboration, Nature, 594, 33-36 (2021)

The ALPACA Collaboration

M. Anzorena¹, D. Blanco², E. de la Fuente³, K. Goto⁴, Y. Hayashi⁵, K. Hibino⁶, N. Hotta⁷, G. Imaizumi¹, A. Jimenez-Meza³, Y. Katayose⁸, C. Kato⁵, S. Kato¹, T. Kawashima¹, K. Kawata¹, T. Koi⁴, H. Kojima⁴, T. Makishima⁸, Y. Masuda⁵, S. Matsuhashi¹⁰, M. Matsumoto⁵, R. Mayta², P. Miranda², A. Mizuno¹, K. Munakata⁵, Y. Nakamura¹, C. Nina², M. Nishizawa¹⁰, Y. Noguchi⁸, S. Ogio¹, M. Ohnishi¹, S. Okukawa⁸, A. Oshima⁴, M. Raljevich², T. Saito¹¹, T. Sako¹, T. K. J. Salinas², T. Shibasaki¹³, S. Shibata⁴, A. Shiomi¹², M. A. Subieta Vasquez², N. Tajima¹⁴, W. Takano⁶, M. Takita¹, Y. Tameda¹⁵, K. Tanaka¹⁶, R. Ticona², I. Toledano-Juarez³, H. Tsuchiya¹⁷, Y. Tsunesada⁹, S. Udo⁵, R. Usui⁸, R. I. Winkelmann², K. Yamazaki⁴ and Y. Yokoe¹ (The ALPACA collaboration)

¹ICRR, University of Tokyo, ²IIF, UMSA, ³U. de Guadalajara, ⁴Chubu University, ⁵Shinshu University, ⁶Kanagawa University, ⁷Utsunomiya University, ⁸Yokohama National University, ⁹Osaka Metropolitan University,

¹⁰National Institute of Informatics, ¹¹Tokyo Metropolitan College of Industrial Technology,¹² Dept. of Info. and Elec., Nagano Pref. Inst. of Tech, ¹³Nihon University, ¹⁴RIKEN, ¹⁵Osaka Electro-Communication University, ¹⁶Hiroshima City University, ¹⁷Japan Atomic Energy Agency.

ALPACA Site

Cosmic Ray Observatory at 5200m a.s.l.

4200m

23

1

エル・アルト

EL Alto

Airport

4000m

Google

ALPACA Site 4740m a.s.l (- 570 g/cm²)

4600m

ラパス

La Paz

.a Paz

41

UPAC KATAR

ホセ・アルサ

3

ラパス国際空港

(41)

ALPACA

(Andes Large area PArticle detector for Cosmic ray physics and Astronomy)

1. <u>Air Shower (AS) Array ~83,000m²</u> $= 401 \times 1m^2$ Scintillation Detector Gamma rays & Cosmic rays 2. Underground Muon Detector (MD) ~3600m² = Water-Cherenkov-Type, 2.5m overburden ($\sim 19X_0$) 56m² with 20" ϕ PMT x 64 Cells UL ALPACA AS and MD Ohnish Soil & Rocks 2.6m 1.0m 20 inch Air 0.9m Water 1.5m 7.5m Cherenkov lights Reinforced concrete Waterproof & reflective materials ✓ Gamma-ray air shower has much less muons. Background cosmic rays can be rejected by >99.9% @100TeV. \checkmark Wide FoV (~2sr) observation regardless day/night and weather \leftarrow 300 m - Angular resolution ~0.2° @100TeV Energy resolution ~20% @100TeV

ALPAQUITA AS array

Surface Air Shower Array (Coverage: **18,450** m²)

1 m² scintillation detector (× 97)

1m² 5mm lead plate
1m² Scintillator(50cm x 50cm x 5cm x4)
Inverse pyramid shape
Stainless steel box (White painted inside)
2-inch PMT x1

- ✓ Air Shower Trigger Condition: Any 4 detectors with > 0.7 particles within 600 ns
 → Air shower trigger rate: ~280 Hz (Any 3 trigger has been implemented since June 2024)
- ✓ Cosmic-ray mode energy ~7 TeV

Gamma rays & Cosmic rays

Construction status:

- 2022 Jun. Deploy detectors
- 2022 Sep. Partial operation
- 2023 Apr. Full operation

ALPAQUITA Air Shower Analysis

Even-Odd Method

✓ For estimation of angular resolution

Even-Odd opening angle $\Delta \theta_{OP}$:

Opening angle between directions determined by two independent arrays (even and odd arrays)

Schedule of ALPAQUITA MD construction

Schedule of full ALPACA construction

Summary & Prospects

✓ALPACA aims to observe sub-PeV gamma-ray sources

in the southern galaxy and the Galactic Center

- ✓ALPAQUITA AS array: 2022-
- \checkmark Moon Shadow is successfully detected at 8.0 σ
- ✓Angular resolution is estimated to be \sim 1 degree (CRs with mode energy < 10 TeV).

✓Schedule:

- ✓ Construction of ALPAQUITA with one MD: 2024-
- ✓ Full ALPACA operation (4 MDs): 2025-
 - \rightarrow sub-PeV γ -ray/CR observation will start soon in the southern hemisphere!

BACKUP SLIDES

ALPAQUITA Sensitivity

Kato et al (ALPACA Collob.), Exp. Astro., 52, 85 (2021)

ALPACA Sensitivity

