AXION STARS: MASS FUNCTIONS AND CONSTRAINTS

Based on arXiv:2406.09499 with Patrick J. Fox and Huangyu Xiao

Jae Hyeok Chang Fermilab and UIC

08/28/2024 TeVPA 2024

- CDM halo with $\delta \gg 1$ deep in matter-domination

- CDM halo with $\delta \gg 1$ deep in matter-domination
- Baryons fall into the CDM potential well

- CDM halo with $\delta \gg 1$ deep in matter-domination
- Baryons fall into the CDM potential well
- They collapse into a disk due to interactions and their angular momentum

- CDM halo with $\delta \gg 1$ deep in matter-domination
- Baryons fall into the CDM potential well
- They collapse into a disk due to interactions and their angular momentum
- Fragments due to rapid cooling

For dark star formation from fragmentation, see 1812.07000 and Melissa's talk

- CDM halo with $\delta \gg 1$ deep in matter-domination
- Baryons fall into the CDM potential well
- They collapse into a disk due to interactions and their angular momentum
- Fragments due to rapid cooling
- Each blob forms a stable compact object

Need interactions, especially cooling

How are axion stars formed?

- Different Hubble patches after inflation

How are axion stars formed?

- Different Hubble patches after inflation
- If PQ symmetry is broken after inflation, Hubble patches pick different initial values

 $\theta \in (-\pi,\pi)$

- Axions can have large perturbations at small scales in the early Universe
- Yields a white-noise power spectrum

Axion minihalos

- Axion minihalo (minicluster) forms from the large perturbations early times
- Such minihalos are already light:

$$M_{h,c} \sim 10^{-14} M_{\odot} \left(\frac{\mu \text{eV}}{m_a}\right)^{0.51}$$
 for OCD axions

 Mass distribution of minihalos can be obtained from the Press-Schechter formalism

Axion stars

• Stable configuration of axion fields

$$E_{\star} = -\frac{GM_{\star}^2}{R_{\star}} + c_1 \frac{M_{\star}}{2m_a^2 R_{\star}^2}$$

Visinelli et al, 1710.08910

• Form and grow after one relaxation time

$$\tau_{\rm gr} \sim \left(f_{BE} n \sigma_{\rm gr} \nu\right)^{-1}$$

Levkov et al, 1804.05857

Gravitational interaction is enough

• The mass of axion star is determined by m_a , M_h , and t

Goal of this work

- Getting the mass function of axion stars needs heavy numerical simulations, especially the contribution from axion strings
- We propose a reasonable way to calculate the mass function analytically with the white-noise part
- We also provide constraints on axion masses from the mass function

We consider two axion models

QCD axion

Solves the strong CP problem

•
$$m_a(T) \sim m_a(0) \left(\frac{\Lambda_{\rm QCD}}{T}\right)^4$$
 for $T > \Lambda_{\rm QCD}$

- Besides this, we can still ignore the interactions other than gravity
- ALP (Axion-like particle)
 - We ignore all the interactions
 - The mass of axions does not depend on the temperature
 - Starts to oscillate at its zero-temperature mass

To get the axion star mass analytically

- We consider axion minihalos at matter-radiation equality and let axion stars evolve inside minihalos for one Hubble time
- Matter-radiation equality because $t_J \sim t_{eq}$
- One Hubble time because merger of minihalos increase the relaxation time and axion star formation ceases

To get the axion star mass analytically

 We consider axion minihalos at matter-radiation equality and let axion stars evolve inside minihalos for one Hubble time

Axion star in minihalos

Axion star mass functions (QCD axion)

Axion star mass functions (ALP)

ALP mass constraints

 We put constraints on ALP masses from heating of ultra-faint dwarfs (See Hari's talk)
Graham and Ramani, 2311.07654, 2404.01378

Conclusions

- We calculate axion star mass function analytically
- The resulting mass function gives constraints on axion masses via heating of ultra-faint dwarf galaxies
- The mass function can be used for future gravitational searches of axion stars

THANKYOU