

A high-efficiency UHE neutrino search with hybrid detector system of the Askaryan Radio Array

28th August, 2024

Paramita Dasgupta for the ARA Collaboration

Paramita Dasgupta, CCAPP, Ohio State Univ.

Askaryan Radio Array

ARA's 5th station is special

A1 - A4

HPol

VPol

Paramita Dasgupta, CCAPP, Ohio State Univ.

A5 + PA system

A Phased Array Trigger Design

- Phased Array demonstrated capabilities of triggering on low SNR signals which are otherwise buried in noise
- Phased Array improves signal strength by combining multiple signals together before the signals are fed into the trigger system

- Adds signals together in predetermined directions ("beams") through delay-andsum method.
- Plane wave signals add coherently, noise likely does not. This effectively lowers trigger threshold

The phased array detector

Analysis with PA antennas alone significantly improves trigger efficiency

The Phased Array

Paramita Dasgupta, CCAPP, Ohio State Univ.

Improved Trigger efficiency

The phased array detector

A Pioneering Hybrid Analysis

Combine PA & ARA subdetectors to maximize background rejection & analysis efficiency

- Hybrid design = Phased array + 7 A5 Vpols readout through the Phased Array DAQ
- **Unique detector, representative of next** generation of detectors like RNO-G & IceCube-Gen2
- Livetime : 2020 + 2021 data from hybrid system
- Optimize cuts for 5 σ discovery potential

Paramita Dasgupta, CCAPP, Ohio State Univ.

Marco Muzio, Penn State

Paramita Dasgupta, Ohio State

ARA station 5

Advantages of a Hybrid detector

- Excellent amizuth sensitivity with hybrid antennas
- ~2x zenith sensitivity to vertex position
- Precise in-ice reconstruction of events
- High background rejection based on direction and timing information

Reconstruction of Source location with A5-PA hybrid system

- **Excellent pointing accuracy with A5-PA antennas, improved vertex** reconstruction would lead to improved analysis efficiency
- Improved surface background removal using correlation map

Paramita Dasgupta, CCAPP, Ohio State Univ.

Reconstructed pulser source location using A5-PA hybrid antennas

Background removal: Continuous Wave (CW) Signals

Paramita Dasgupta, CCAPP, Ohio State Univ.

Maximum Correlation

0.14

Analysis pipeline

Paramita Dasgupta, CCAPP, Ohio State Univ.

Analysis pipeline

Paramita Dasgupta, CCAPP, Ohio State Univ.

- We train linear discriminant to maximize separation in our selection variable space.
- Final variable = LDA value from data and simulation
 - LDA = combination of all analysis variables from data and simulated neutrinos

Paramita Dasgupta, CCAPP, Ohio State Univ.

* Large fluctuations in simulated neutrino distribution due to limited statistics at low energies additional simulations underway

- We train linear discriminant to maximize separation in our selection variable space.
- We will set a cut for the best expected sensitivity.

- We train linear discriminant to maximize separation in our selection variable space.
- We will set a cut for the best expected sensitivity.

- We train linear discriminant to maximize separation in our selection variable space.
- We will set a cut for the best expected sensitivity.
- Final cut will be on LDA value & will be optimized for 5σ discovery using IceCube 2018 limit as flux model (https://arxiv.org/abs/1807.01820)

Paramita Dasgupta, CCAPP, Ohio State Univ.

* Large fluctuations in simulated neutrino distribution due to limited statistics at low energies additional simulations underway

Projected Sensitivity

- **Expected number of events with analyzed** livetime of only 1.38 years at trigger level
 - Kotera et al. flux: ~0.12 events
 - van Vliet et al. (Auger) flux: ~0.61 events
 - IceCube 2018 limit flux: ~0.79 events
- **Demonstration of end-to-end analysis tools**
- Pioneering analysis with a Phased array-traditional antenna combined system of detectors
- Proof of concept for next generation detectors IceCube-Gen2 radio (361 stations) and **RNO-G (35 stations)**

Paramita Dasgupta, CCAPP, Ohio State Univ.

*Projected assuming same analysis efficiency as 2019 PA analysis

Thank you

