(Can you) Infer the dark matter profile of the Milky Way from its circular velocity curve

Xiaowei Ou MIT In collaboration with Anna-Christina Eilers, Lina Necib, and Anna Frebel

Credit: ESA/Gaia/DPAC

Measure the circular velocity curve for the Milky Way

Infer the dark matter profile

A data-driven model for more precise distances*

*: parallax

Modeling the curve: generalized NFW vs. Einasto profiles

Modeling the curve: generalized NFW vs. Einasto profiles

gNFW profile cannot model the decline

Modeling the curve: Einasto vs. generalized NFW profiles

Exponential drop-off in dark matter density outside of R~10 kpc

needed to explain the decline*

Ou et al. (2024a); arXiv:2303.12838

DM density at 8kpc in the MW: 0.45 GeV/cm³

Both gNFW and Einasto results are consistent and also agreeable with literature results

Credit: de Salas & Widmark (2021)

Galactic center J-factor

Consistently lower normalized average *J*-factor

 $J = \int \rho^2 ds$

Integrated *J*-factor at 15° from the Einasto an order of magnitude lower than from the fiducial NFW profile

Measure the circular velocity curve for the Milky Way (Can you) Infer the dark matter profile

How can we understand this measurement?

Poses questions on these topics:

Non-axisymmetric potential

Dynamical disequilibrium from recent mergers

Uncertainty in tracer population profile

Underestimated asymmetric drift correction

(Nguyen & Ou et al. 2024)

Test the robustness of the same method

From stellar sample selection to Jean's equation calculation

Compare with underlying truth from the simulation

Poses questions on these topics:

Non-axisymmetric potential

Dynamical disequilibrium from recent mergers

Uncertainty in tracer population profile

Underestimated asymmetric drift correction

Poses questions on these topics:

Non-axisymmetric potential

Dynamical disequilibrium from recent mergers

Uncertainty in tracer population profile

Underestimated asymmetric drift correction

Poses questions on these topics:

Non-axisymmetric potential

Dynamical disequilibrium from recent mergers

Uncertainty in tracer population profile

Underestimated asymmetric drift correction

Poses questions on these topics:

Non-axisymmetric potential

Dynamical disequilibrium from recent mergers

Uncertainty in tracer population profile

Underestimated asymmetric drift correction

Poses questions on these topics:

Non-axisymmetric potential

Dynamical disequilibrium from recent mergers

Uncertainty in tracer population profile

Underestimated asymmetric drift correction

Poses questions on these topics:

Non-axisymmetric potential

Dynamical disequilibrium from recent mergers

Uncertainty in tracer population profile

Underestimated asymmetric drift correction

Conservatively increase the uncertainties:

Both Einasto and gNFW fits are plausible.

Dark matter density: before and after

DM density at 8kpc in the MW: 0.37 vs. 0.49 GeV/cm³

gNFW fit is consistent with the fiducial NFW profile.

Cusp or Cored?

Measure the circular velocity curve for the Milky Way (Can you) Infer the dark matter profile

Summary:

Measuring circular velocity curve alone is not sufficient to understand the nature of dark matter in the Milky Way.

Backup slides

Comparison with the current literature

Comparison

More tests on the robustness of the curve and the fit

Varying baryonic models yields consistent dark matter halo fitting results

Dynamical mass of the Milky Way from different tracers

Dynamical mass of the Milky Way from different tracers

Annihilation cross section

$$J = \int \rho^2 ds$$

Lower *J*-factor *increases* the inferred annihilation cross section

Tension with dwarf galaxy constraint!

Dark matter models in general

Baryonic feedback

 intense star formation episodes with decreased rate of dark matter occretion rate at the center

Non-equilibrium solar kinematics

- non-axisymmetic otential;
- recent mergers;
- tracer population profile
- underestimated asymmetric drift correction from vertical motion

Fuzzy dark matter

