Modeling the refractive index profile of polar ice with the Askaryan Radio Array (ARA)

Kenny Couberly

ARA Collaboration, University of Kansas

August 28, 2024

 Ω

Ultra-high energy neutrino (UHEN) experiments rely on a depth dependent refractive index $(n(z))$ for calibration and simulations.

- \bullet $n(z)$ affects propagation paths through the ice, determining effective volume via a shadow zone
- ARA includes 5 stations that receive signal from a single deep pulser source
- We compare results of two $n(z)$ models to ARA data
	- single exponential
	- 3 stage exponential

 Ω

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글

ARA Detector

- **ARA** consists of 5 stations (typical station shown right)
- 4 strings each contain 4 antennas ranging 170-200m in depth
	- 2 Hpol and 2 Vpol antennas per string
- Calibration antennas used to calibrate antenna positions and test source reconstruction

画

 Ω

イロト イ押ト イラト イラト

Sorge's Law [\[1\]](#page-17-0)

- Given constant snow accumulation and temperature, snow density $\rho(z, t)$ is constant for a given depth.
- $\rho(z)$ and therefore $n(z)$ are modeled as functions of depth Density as a function of depth is modeled similar to an exponential scale height model.

$$
\rho(z) = \rho_f - b_0 e^{-Cz}
$$

where ρ_f is the density of pure ice, $\rho_f - b_0$ is the density of snow at the surface, and C is a proportionality constant describing the densification rate.

KOLK KØLK VELKEL EL KORO

3 stage exponential model

- Glaciology studies ice densification [\[3\]](#page-17-1), [\[4\]](#page-17-2) occurs in 3 stages
	- snow
	- \bullet firn
	- bubbly ice
- Density boundary conditions
	- 550 kg/m^3 from previous empirical fits to polar density data [\[3\]](#page-17-1)
	- 758 kg/m^3 fit to compiled greenland density data (shown right).

 QQ

 \Rightarrow \rightarrow

Conversion from ice density to n(z)

Study of specific gravity vs dielectric constant of ice in the McMurdo ice shelf suggests a linear relationship between density and index of refraction [\[2\]](#page-17-3)

The following equation describes the relation

$$
n(z) = 1 + A\rho
$$

where A is a proportionality constant and ρ is the specific gravity.

- \bullet A = 0.845 from the McMurdo study
- Data drawn from a specific gravity range of 0.2-0.8 (snow/firm region)

 Ω

Applying conversion to ice density data

- Single exponential and 3 stage models
	- \bullet C₁ and C₂ fit to SPICE density data, C_3 fit to station A2 deep pulser data (see slide 12).
	- Single exponential fit to A2 data
- Follows density boundary conditions
	- \bullet 20.5m: snow to firm
	- \bullet 96.6m: firn to bubbly ice Figure: Allison *et al* (2020),

Kravchenko I, Besson D, Meyers J. (2004)

イロト イ押ト イヨト イヨト

 Ω

$A2 n(z)$ models

Single exponential model:

$$
n(z) = 1.78 - 0.45e^{-0.0135z}
$$

3 stage parameterization:

$$
z < 20.5m : n(z) = 1.78 - 0.45e^{-0.0148z}
$$

 $20.5m \le z < 96.6m : n(z) = 1.78 - 0.33e^{-0.0114(z-20.5)}$

$$
z \ge 96.6m : n(z) = 1.78 - 0.14e^{-0.0290(z - 96.6)}
$$

KID KARA KERKER E KORO Kenny Couberly (KU) August 28, 2024 8/21

Simulated dt(D,R) timing differences

- Maxwell's equations admit two ray propagation solutions from source to receiver
- The two D and R ray paths are simulated using numerical ray tracer RadioPropa for a given $n(z)$ model
- After calculating the travel time for each ray path, the simulated dt(D,R) is compared to measured values
- Example simulated ray paths from a 1400m deep pulser shown right

4 0 8

 Ω

Direct and Refracted timing difference data $(\mathrm{dt}(\mathrm{D,R}))$

- **O** Observed waveforms from deep pulser sources show two signals
- Signals correspond to the direct (D) and refracted (R) ray propagation paths
- Measured timing differences taken using the leading edges of the D and R signals
- \bullet dt(D,R) taken channel by channel minimizes additional sources of uncertainty

 $($ \Box $)$ $($ \Box $)$

 Ω

Snow accumulation

- Comparison of 2015, 2018, and 2022 DP signals to A3 show how snow accumulation affects dt(D,R)
- Accounts for years between deployment and SPICE pulsing runs
- \pm 0.85 ns statistical uncertainty \bullet among channels

4 0 8

∍

 QQ

SPICE dt(D,R) data

- **•** Transmitter lowered into SPICE bolehole during 2018 season.
- Emitted signal at 1 pps as it was lowered and raised
- Data over depth range of 700-1300m

Figure: Allison et al (2020)

 $2Q$

イロト イ押 トイヨト イヨト 一重

n(z) Model Results - Station A3

Kenny Couberly (KU) August 28, 2024 13/21

 $2Q$

n(z) Model Results - Station A4

 QQQ

Kenny Couberly (KU) August 28, 2024 14/21

n(z) Model Results - A5

 \Rightarrow Kenny Couberly (KU) August 28, 2024 15/21

G.

 \mathcal{A}

 4 D \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow

 299

Shadow Zone Range

- \bullet dt(D,R) decreases the further distance between source and receiver
- \bullet As dt(D,R) approaches zero, bending of possible paths results in signal not reaching receiver
- Region with lack of signal known as the shadow zone
- Shadow zone differs for different \bullet $n(z)$ models, suggesting the simple exponential model underestimates effective volume

Measured $dt(D,R)$ from the pulser lowered into SPICE borehole support a 3 stage exponential over single stage exponential $n(z)$ models

- Single exponential $n(z)$ model deviates from measured data as either source depth or source distance changes relative to initial fit
- Comparison to the 3 stage model suggests that a simple exponential overestimates $n(z)$ in the firn region (20.6-96.6m) and underestimates $n(z)$ for depths greater than 100m

Improved $n(z)$ model helps provide a more accurate effective volume and aid in calibration efforts for UHEN experiments in both Greenland and South Pole

KID KARA KERKER E KORO

References

- Henri Bader. Sorge's law of densification of snow on high polar glaciers. Journal of Glaciology, 2(15):319–323, 1954.
- F Kovacs, A., Gow, A., Morey, R. (1994). The in-situ dielectric constant of polar firn revisited. Cold Regions Science and Technology, 23, 245-256.
- F Michael M Herron and Chester C Langway. Firn densification: an empirical model. Journal of Glaciology, 25 (93):373–385, 1980.
	- Andrey N Salamatin, Vladimir Ya Lipenkov, and Paul Duval. Bubbly-ice densification in ice sheets: I. theory. Journal of Glaciology, 43(145):387–396, 1997.
	- Kravchenko I, Besson D, Meyers J. In situ index-of-refraction measurements of the South Polar firn with the RICE detector. Journal of Glaciology. 2004;50(171):522-532.
	- P Allison, S Archambault, JJ Beatty, DZ Besson, CC Chen, CH Chen, P Chen, A Christenson, BA Clark, W Clay, et al. Long-baseline horizontal radio-frequency transmission through polar ice. Journal of Cosmology and Astroparticle Physics, 2020(12):009, 2020. **K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶** D. Ω

Backup Slides

重

 2990

(す者を)す者を

Kロト K包ト

3 stage density fit to greenland density data

 $2Q$

2 stage density fit

Kenny Couberly (KU) August 28, 2024 21/21

 299