### TESTING WINO DARK MATTER WITH VERITAS DWARF GALAXY OBSERVATIONS









#### TeVPA 2024 Chicago 8/26/2024



#### Matthew Baumgart (ASU)



### WHY DARK MATTER?



#### **Cosmic Microwave Background:**

Fluctuations measure **Dark Matter** as 27% of Universe's energy (Planck)



#### Anomalies on 3 different astrophysical scales!

#### **Galactic Rotation curves:**

Stars move faster than expected



#### Vera Rubin 1928-2016 Established Rotation Curve anomaly

#### **Colliding Clusters:**

Gravitational wells nowhere near visible peaks











$$M_{\chi} \sim \text{TeV}\left(10\sqrt{C}\alpha\right)\sqrt{\frac{\Omega_{\text{DM}}}{0.27}}$$

### WIMP can be simple addition to known particles & forces. WHY?

## WIMP MIRACLE



See Dimopoulos PLB 246(1990):347-52

### STARTING SIMPLE W/WIMPs



#### $<\sigma_V>$ annihilation ~ C $\alpha^2/M_\chi^2$

### Maybe we already know everything here except χ? X: Z-boson, Higgs? ψ: Fermion, Higgs, Gauge boson? C: Clweak?

### "HEAVY NEUTRINO" WIMP



Measured Dark Matter Density



Simple Candidates! Weak Triplet: "Wino" Weak Doublet: "Higgsino" Weak Quintuplet

Correct Dark Matter Density fixes M<sub>X</sub>: Wino: 3 TeV Higgsino: I TeV Quintuplet: 14 TeV



# ECHO OFTHE WIMP MIRACLE





#### **Indirect Detection:** Photons from Dark Matter Annihilation

### HESS/VERITAS/MAGIC can probe Dark Matter Masses up to 30 PeV

### Successor CTAO, will improve sensitivity by Order of Magnitude



Schematic of air shower observed by Cherenkov Telescope (spie.org)

![](_page_6_Figure_8.jpeg)

- Stereoscopic image
- Brightness reconstructs particle energy
- Technique first used to

![](_page_6_Picture_12.jpeg)

# VERITAS OBSERVATORY

- There are 3 major operating Imaging Air-Cherenkov Telescopes in the world today (HESS, MAGIC, VERITAS)
- VERITAS is located outside Amado, Arizona
- Specs:
  - Energy range: 85 GeV to 30+TeV
  - 3.5° field of view
  - Energy resolution 15-25%
  - Angular resolution <0.1° at 1 TeV
  - Peak effective area, 10<sup>5</sup> m<sup>2</sup>
- 638 hours of observation time on Dwarf Spheroidal Galaxies (dSphs), promising dark matter targets

![](_page_7_Picture_10.jpeg)

#### VERITAS at Fred Lawrence Whipple Observatory

![](_page_7_Picture_12.jpeg)

**VERITAS** event

![](_page_7_Picture_14.jpeg)

8

![](_page_7_Picture_16.jpeg)

# DWARF SPHEROIDAL GALAXIES

- As a **complimentary target**, one can also study dwarf spheroidal galaxies (dSphs).
- Among the most dark matter-dominated objects in the Universe (mass-to-light ratios (10-1,000+) higher than Milky Way and other spiral galaxies (1-10)).
- Simpler backgrounds and easier determination of dark matter distribution from stellar kinematics.

![](_page_8_Figure_4.jpeg)

### WIMPs: 3 separate threats to perturbation theory!

- $M_X/m_w >> I \rightarrow Long$  range force
- $M_X/m_w >> I \rightarrow Electroweak shower$
- $Log(I-z_{cut}) \rightarrow Detailed shape near bump$
- Proliferation of scales → Effective Field Theory

![](_page_9_Picture_6.jpeg)

![](_page_9_Figure_7.jpeg)

![](_page_9_Figure_8.jpeg)

EFTs: Modified versions of Soft-Collinear Effective Theory NRQCD

### EFFECTIVE FIELD THEORY PLAYGROUND

![](_page_10_Picture_1.jpeg)

11

## SOMMERFELD ENHANCEMENT

![](_page_11_Picture_1.jpeg)

 $r_{Bohr} \sim 1/\alpha M_{\chi}$ 

r<sub>Bohr</sub> >> r<sub>Range</sub> No bound state

Transition from short to long-range force leads to resonance

![](_page_11_Picture_6.jpeg)

r<sub>Range</sub> >> r<sub>Bohr</sub> Bound state forms

For wino  $m_W = \alpha_W M_X @ M_X = 2.4 \text{ TeV}$ 

# WINO NR COMPUTATION

![](_page_12_Figure_1.jpeg)

$$M_{\chi}({\rm TeV})$$

$$\left\langle 0 \left| \chi_v^{3T} i\sigma_2 \chi_v^3 \right| \left( \chi^0 \chi^0 \right)_S \right\rangle = 4\sqrt{2} M_\chi s_{00} \right.$$

$$\left\langle 0 \left| \chi_v^{+T} i\sigma_2 \chi_v^{-} \right| \left( \chi^0 \chi^0 \right)_S \right\rangle = 4 M_\chi s_{0\pm}$$

Wavefunction at the origin

### HUGE ACCELERATION -> CLASSICAL RADIATION

Charged particles in annihilation process radiate ( $\gamma$ , W, Z) from acceleration

$$\sigma v = \sigma v_0 \left| \exp\left[ -\frac{\alpha}{2\pi} \log(E) \right] \right| = \frac{1}{2\pi} \log(E)$$

Above rate produces classical spectrum, but hard to see in quantum perturbation theory

$$\frac{\alpha_W}{\pi}\log(M$$

(Radiation)

![](_page_13_Picture_6.jpeg)

Perturbative factor picks up kinematic enhancements 'Sudakov double log'

 $E_{\rm high}/E_{\rm low})\log(E_{\rm high}/E_{\rm collinear})\Big|\Big|^2$ 

![](_page_13_Picture_9.jpeg)

Double log Large correction!

![](_page_13_Picture_12.jpeg)

### SOFT/COLLINEAR ENHANCEMENT

**Soft radiation:** Time-scales much longer than annihilation

![](_page_14_Picture_2.jpeg)

of one particle into 2

![](_page_14_Picture_4.jpeg)

SCET for Dark Matter annihilation [MB, Rothstein, I., Vaidya, V.: 1409.4415]

See also:; 1409.7392: Bauer et al. 1409.8294: Ovanesyan, Slatyer, Stewart

#### Keep modes with kinematic enhancement (soft, collinear)

\*Originally developed for study of QCD hep-ph/0005275: Bauer, Fleming, Luke hep-ph/0011336: Bauer et al.

### NLL RESUMMED PHOTON SPECTRUM FROM WINO

![](_page_15_Figure_1.jpeg)

$$\begin{split} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}z}\right)^{\mathrm{NLL}} &= \frac{\pi \, \alpha_W^2 \left(2 \, M_\chi\right) s_W^2 \left(m_\chi\right)}{9 \, M_\chi^2 \, v \left(1-z\right)} \\ &= \left\{ \left( \begin{array}{c} \left|s_{00}\right|^2 \left[4 \, \Lambda^d + \right. \right. \right. \\ \left. + \sqrt{2} \, \mathrm{Re} \left[s_{00} + \left((V_S - 1) \, \Theta_S \right. \\ \left. \left( \left|s_{00}\right|^2 \left[2 \, r_{HS}^{6/2} \right. \\ \left. + \sqrt{2} \, \mathrm{Re} \left[s_{00} + \left. \frac{s_{00} + \left. \sqrt{2} \, \mathrm{Re} \left[s_{00} + \left. \frac{s_{00} + \left. \sqrt{2} \, \mathrm{Re} \left[s_{00} + \left. \frac{s_{00} + \left. \frac{s$$

Here  $\sigma_{\text{exc}}^{\text{NLL}}$  is the NLL exclusive cross section, which is given by

$$\sigma_{
m exc}^{
m NLL} = rac{\pi \, lpha_W^2 \left( 2 \, M_\chi 
ight) s_W^2 \left( m_W 
ight)}{9 \, M_\chi^2 \, v} \, U_H 
onumber \ imes \left\{ \left[ 4 + 4 \, r_H^{12/eta_0} - 8 \, r_H^{6/eta_0} c_H 
ight] \, igg|_S 
onumber \ + \sqrt{2} \left[ 8 - 4 \, r_H^{12/eta_0} - 4 \, r_H^{6/eta_0} c_H 
ight] \, igg|_S$$

MB, N. Rodd, T. Slatyer, and V. Vaidya: 2309.11562 Same result for any real SU(2) representation with appropriate F<sub>0,1</sub>

![](_page_15_Figure_7.jpeg)

### CUMULATIVE RESUMMED ANNIHILATION RATES @THERMAL RELIC MASSES

![](_page_16_Figure_1.jpeg)

# DWARF SPHEROIDAL SEARCH

![](_page_17_Figure_1.jpeg)

#### Likelihood method

$$\mathcal{L} = \frac{(\mathcal{S} + \alpha \mathcal{B})^{N_{on}} e^{-(\mathcal{S} + \alpha \mathcal{B})}}{N_{on}!} \frac{\mathcal{B}^{N_{off}} e^{-\mathcal{B}}}{N_{off}!} \prod_{i=1}^{N_{on}} P_i(E_i | M_{\chi}, \langle \sigma v \rangle),$$

$$\log \mathcal{L} = N_{off} \log \mathcal{B} - \mathcal{S} - (1 + \alpha)\mathcal{B} + \sum_{i=1}^{N_{on}} \log (\alpha \mathcal{B} p_{b,i} + \mathcal{S} p_{s,i}),$$

N<sub>on</sub>: the total number of events from on region  $\underline{N}_{off}$ : the total number of events from off regions S: the expected number of the DM signal from dSphs, which is a function of the DM cross section

$$S = \int dE \ dE' d\Omega \ \frac{d\Phi_{\gamma}(E, \langle \sigma \nu \rangle)}{dE_{\gamma}} \times R(E, E', \Omega) \qquad \qquad \frac{d\Phi_{\gamma}}{dE_{\gamma}} = \frac{1}{4\pi} \frac{\langle \sigma \nu \rangle}{\delta m_{\chi}^2} \frac{dN_{\gamma}}{dE_{\gamma}} \int \int \rho^2 ds d\Omega$$

B: the expected background α: a relative exposure time between on and off reg

![](_page_17_Picture_8.jpeg)

Nuisance Parameter Strongly Constrained by Off-region events

![](_page_17_Picture_11.jpeg)

## PRELIMINARY VERITAS dSphs LIMIT

![](_page_18_Figure_1.jpeg)

- NO mass tion • Ou • Co wh • Un • Un • Bin exp • The • Lim MA incl
  - Our new dSphs search for the wino!
  - Comparable limit to MAGIC (2022), HESS(2020) which used older, more aggressive J-factors
  - Uncertainty dominated by J-factors.
  - Binned analysis with bin size set by experimental resolution
  - The wino is cornered, but still viable
  - Limits become much stronger than MAGIC/HESS ≥ 10 TeV. Our calculation includes continuum photons from signal.

MB, **O. Calcerano**, C. McGrath, E. Pueschel, J. Quinn, D. Tak & VERITAS

10<sup>2</sup>

![](_page_18_Picture_11.jpeg)

# FUTURE DIRECTIONS

- Simple, electroweak thermal relic dark matter...is alive!
- Under pressure in the galactic center, dSphs offer an orthogonal probe
- Our simple analysis already competitive with MAGIC & HESS •
- Can we push to thermal relic exclusion? •
  - Take more dSphs data (Ursa Major III as new, attractive target)
  - Extend spatial region
  - Gaussian process modeling for background as in 2405.13104: N. Rodd, B. Safdi, W. Xu.
  - together along with HESS.

• Straightforward to extend for quintuplet. Naively, our bound looks stronger than MAGIC at thermal relic mass (14 TeV)

![](_page_19_Picture_15.jpeg)

• Combine with other telescopes (à la Glory Duck). MAGIC and VERITAS so close individually, maybe we get there

![](_page_19_Picture_18.jpeg)

# MAGIC GALACTIC CENTER LIMITS

#### MAGIC Galactic Center Limits 2212.10527

![](_page_20_Figure_2.jpeg)

For cored profiles, MAGIC achieves similar sensitivity to our dSphs result

![](_page_20_Picture_5.jpeg)

# J-FACTOR COMPARISON

![](_page_21_Figure_1.jpeg)

From J. Quinn

![](_page_22_Figure_1.jpeg)

2107.09688: Bottaro et al.

## DIRECT DETECTION?

![](_page_22_Figure_4.jpeg)

2205.04486: Bottaro et al.

### "MINIMAL DARK MATTER"

SU(2) quintuplet (Y=0) has neutral DM candidate.
Charged and doubly-charged states with narrow mass splitting.
Keeps SU(2) Landau pole above GUT scale

Cosmologically stable just under SM symmetries

 $\mathcal{O}_{\text{decay}} = rac{c}{\Lambda^2} \chi_{abcd} L^a H^b H^c H^d$ 

![](_page_23_Picture_4.jpeg)

![](_page_23_Picture_6.jpeg)

# PROJECTED QUINTUPLET LIMITS

![](_page_24_Figure_1.jpeg)

X. Ou, A-C. Eilers, L. Necib, A. Frebel: 2303.12838 Some evidence for few-kpc core in Milky Way

### SOFT-COLLINEAR EFFECTIVE THEORY

• Large scale-hierarchies can arise within one field

![](_page_25_Figure_2.jpeg)

 We can use Renormalization Group to resum kinematic logs Lightcone momenta  $k^+ = k^0 + k^3$  $k^- = k^0 - k^3$ 

![](_page_25_Figure_5.jpeg)

Integrate out hard modes, separate fields for those collinear to null directions and soft momenta.

![](_page_26_Picture_0.jpeg)

## SCET OBSERVABLES

Factorized Hilbert Space:

 $|X\rangle = |X_{\text{collinear}}\rangle |X_{\text{soft}}\rangle$ 

EFT Benefit: S & J representation independent! Compute once and for all.

 $d\sigma = H(Q) J(Q, z_{\text{collinear}}) \otimes S(z_{\text{soft}})$ 

 $S = \langle 0 | (YY)^{\dagger} \, \delta [f(z_{\text{soft}})] (YY) | 0 \rangle$ 

Soft Wilson Line

 $J_n = \langle 0 | B_{n\perp} \delta [f(Q, z_{\text{collinear}})] | X_n \rangle \langle X_n | B_{n\perp} | 0 \rangle$ 

![](_page_26_Picture_10.jpeg)

![](_page_26_Picture_11.jpeg)

# SOFT REFACTORIZATION

S: Perform matching  $@M_X\sqrt{(I-Z_{cut})}$  $S \rightarrow H_{S}(M_{\chi}\sqrt{(1-z_{cut})})S(m_{W})$ ???

> Remaining **soft**:  $(p_{+},p_{-},p_{\perp}) \sim M(\lambda,\lambda,\lambda)$  $\lambda = m_W/M_X$

![](_page_27_Figure_4.jpeg)

#### **BUT...**

what about measurement function?

![](_page_27_Picture_7.jpeg)