TESTING WINO DARK MATTER WITH VERITAS DWARF GALAXY OBSERVATIONS

Matthew Baumgart (ASU)

TeVPA 2024 Chicago 8/26/2024

WHY DARK MATTER?

Vera Rubin 1928-2016 Established Rotation Curve anomaly

Colliding Clusters:

Gravitational wells nowhere near visible peaks

Galactic Rotation curves:

Stars move faster than expected

Anomalies on 3 different astrophysical scales!

Cosmic Microwave Background:

Fluctuations measure Dark Matter as 27% of Universe's energy (Planck)

$$
M_{\chi} \sim \text{TeV} \left(10 \sqrt{C \alpha} \right) \sqrt{\frac{\Omega_{\text{DM}}}{0.27}}
$$

See Dimopoulos PLB 246(1990):347-52

$$
\Omega_{\rm DM} \sim \frac{1}{10^3 \langle \sigma v \rangle} \frac{1}{T_{\rm CMB} M_{Planck}} \sim \frac{1}{10^3 \langle \sigma v \rangle}
$$

$$
\sqrt{\frac{1}{10^3 \langle \sigma v \rangle_{\rm annihilation}} \sim \frac{1}{10^3 \langle \sigma v \rangle_{\rm annihilation}}}
$$

WIMP can be simple addition to known particles & forces. **WHY?**

WIMP MIRACLE

STARTING SIMPLE W/ WIMPs

$<$ σν $>$ _{annihilation} ~ C α²/M_x²

Maybe we already know everything here except χ? X: Z-boson, Higgs? ψ: Fermion, Higgs, Gauge boson? α: αweak?

"HEAVY NEUTRINO" WIMP

Simple Candidates! Dark Matter ↔ Weak Scale: Weak Triplet: "Wino" Weak Doublet: "Higgsino" Weak Quintuplet Correct Dark Matter

Density fixes M_x: Wino: 3 TeV Higgsino: 1 TeV Quintuplet: 14 TeV

Measured Dark Matter **Density**

ECHO OF THE WIMP MIRACLE

Schematic of air shower observed by Cherenkov Telescope (spie.org)

HESS/VERITAS/MAGIC can probe Dark Matter Masses up to 30 PeV

Successor CTAO, will improve sensitivity by Order of Magnitude

Indirect Detection: Photons from Dark Matter Annihilation

- Stereoscopic image
- Brightness reconstructs particle energy
- Technique first used to

VERITAS OBSERVATORY

- There are 3 major operating Imaging Air-Cherenkov Telescopes in the world today (HESS, MAGIC, VERITAS)
- VERITAS is located outside Amado, Arizona
- Specs:
	- Energy range: 85 GeV to 30+ TeV
	- 3.5∘ field of view
	- Energy resolution 15-25%
	- Angular resolution <0.1° at I TeV
	- Peak effective area, 10⁵ m²
- 638 hours of observation time on Dwarf Spheroidal Galaxies (dSphs), promising dark matter targets

VERITAS event

VERITAS at Fred Lawrence Whipple Observatory

DWARF SPHEROIDAL GALAXIES

9

- As a complimentary target, one can also study dwarf spheroidal galaxies (dSphs).
- Among the most dark matter-dominated objects in the Universe (mass-to-light ratios (10-1,000+) higher than Milky Way and other spiral galaxies (1-10)).
- Simpler backgrounds and easier determination of dark matter distribution from stellar kinematics.

• WIMPs: 3 separate threats to perturbation theory!

- $M_x/m_w >> 1 \rightarrow Long range force$
- $M_x/m_w >> 1 \rightarrow Electroweak shower$
- Log(1- z_{cut}) \rightarrow Detailed shape near bump
- Proliferation of scales \rightarrow Effective Field Theory

EFTs: Modified versions of Soft-Collinear Effective Theory & **NRQCD**

EFFECTIVE FIELD THEORY PLAYGROUND

SOMMERFELD ENHANCEMENT

 r_{Bohr} >> r_{Range} No bound state

 $r_{Bohr} \sim 1/aM_X$

 $r_{\text{Range}} >> r_{\text{Bohr}}$ Bound state forms

For wino $m_W = \alpha_W M_X \omega M_X = 2.4 \text{ TeV}$

Transition from short to long-range force leads to resonance

WINO NR COMPUTATION

$$
M_{\chi}(\text{TeV})
$$

$$
\left\langle 0 \middle| \chi_v^{3\,T} \, i\sigma_2 \, \chi_v^{3} \, \left| \left(\chi^0 \chi^0 \right)_S \right. \right\rangle = 4\sqrt{2} \, M_\chi \, s_{00}
$$
\n
$$
\left\langle 0 \middle| \chi_v^{+T} \, i\sigma_2 \, \chi_v^{-} \left| \left(\chi^0 \chi^0 \right)_S \right. \right\rangle = 4 \, M_\chi \, s_{0\pm}
$$

Wavefunction at the origin

HUGE ACCELERATION → CLASSICAL RADIATION

$$
\frac{\alpha_W}{\pi} \log(M
$$

Large correction!

 $\log(E_{\rm high}/E_{\rm low})\log(E_{\rm high}/E_{\rm collinear})$ i

Above rate produces classical spectrum, but hard to see in quantum perturbation theory

radiate (γ, W, Z) from acceleration

$$
\sigma v = \sigma v_0 \left| \exp \left[-\frac{\alpha}{2\pi} \log(E) \right] \right|
$$

2

 $\overline{\mathsf{I}}$

Perturbative factor picks up kinematic enhancements "Sudakov double log"

I

(Radiation)

SOFT/COLLINEAR ENHANCEMENT

Keep modes with kinematic enhancement (soft, collinear)

SCET for Dark Matter annihilation [MB, Rothstein, I., Vaidya, V.: 1409.4415]

> *Originally developed for study of QCD hep-ph/0005275: Bauer, Fleming, Luke hep-ph/0011336: Bauer et al.

Soft radiation: Time-scales much longer than annihilation

of one particle into 2

See also: ; 1409.7392: Bauer et al. 1409.8294: Ovanesyan, Slatyer, Stewart

NLL RESUMMED PHOTON SPECTRUM FROM WINO

$$
\left(\frac{d\sigma}{dz}\right)^{NLL} = \frac{\pi \alpha_W^2 (2 M_\chi) s_W^2 (m \cdot m)}{9 M_\chi^2 v (1 - z)}
$$

$$
\begin{cases}\n\left(\begin{array}{c}\n|s_{00}|^2 \left[4 \Lambda^d + \frac{1}{\sqrt{2}} \text{Re}\left[s_{00}\right.\right]\n\end{array}\right.\n\right. \\
\left. + \frac{\left((V_S - 1) \Theta_S\right)}{\left(\begin{array}{c}\n|s_{00}|^2 \left[2 r_{H_S}^{6/2} + \frac{1}{\sqrt{2}} \text{Re}\left[\frac{1}{\sqrt{2}} \Lambda^d\right.\right]\n\end{array}\right.\n\right. \\
\left. + \frac{\sigma_{\text{exc}}^{NLL} \delta (1 - z)}{\left(\begin{array}{c}\n|s_{\text{exc}}\right)^2}\n\end{array}\right.\n\right.
$$

Here $\sigma_{\text{exc}}^{\text{NLL}}$ is the NLL exclusive cross section, which is given by

$$
\sigma_{\text{exc}}^{\text{NLL}} = \frac{\pi \,\alpha_W^2 (2 \, M_\chi) s_W^2 (m_W)}{9 \, M_\chi^2 \, v} \, U_H
$$
\n
$$
\times \left\{ \left[4 + 4 \, r_H^{12/\beta_0} - 8 \, r_H^{6/\beta_0} c_H \right] \right\} \times \left\{ \sqrt{2} \left[8 - 4 \, r_H^{12/\beta_0} - 4 \, r_H^{6/\beta_0} c_H \right] \right\}
$$

MB, N. Rodd, T. Slatyer, and V. Vaidya: 2309. 11562
MB et al.: 1808.08956 Same result for any real SU(2) representation with appropriate $F_{0,1}$

CUMULATIVE RESUMMED ANNIHILATION RATES @ THERMAL RELIC MASSES

From D. Tak TeVPA 2023

DWARF SPHEROIDAL SEARCH IO ARRE SPHERO

Likelihood method

$$
\mathcal{L} = \frac{(\mathcal{S} + \alpha \mathcal{B})^{N_{on}} e^{-(\mathcal{S} + \alpha \mathcal{B})}}{N_{on}!} \frac{\mathcal{B}^{N_{off}} e^{-\mathcal{B}}}{N_{off}!} \prod_{i=1}^{N_{on}} P_i(E_i|M_{\chi}, \langle \sigma v \rangle),
$$

$$
\log \mathcal{L} = N_{off} \log \mathcal{B} - \mathcal{S} - (1+\alpha)\mathcal{B} + \sum_{i=1}^{N_{on}} \log \left(\alpha \mathcal{B} p_{b,i} + \mathcal{S} p_{s,i}\right),
$$

 N_{on} : the total number of events from on region M_{off} : the total number of events from off regions S. the expected number of the DM signal from dSphs, which is a function of the DM cross section

$$
S = \int dE \, dE' d\Omega \frac{d\Phi_{\gamma}(E, \langle \sigma v \rangle)}{dE_{\gamma}} \times R(E, E', \Omega) \qquad \frac{d\Phi_{\gamma}}{dE_{\gamma}} = \frac{1}{4\pi} \frac{<\sigma v>}{\delta m_{\chi}^2} \frac{dN_{\gamma}}{dE_{\gamma}} \int \int \rho^2 ds d\Omega
$$

B: the expected background α : a relative exposure time between on and off reg

> Nuisance Parameter Strongly Constrained by Off-region events

PRELIMINARY VERITAS dSphs LIMIT

MB, O. Calcerano, C. McGrath, E. Pueschel, J. Quinn, D. Tak & VERITAS

- Our new dSphs search for the wino!
- Comparable limit to MAGIC (2022), HESS(2020) which used older, more aggressive J-factors
- Uncertainty dominated by J-factors.
- Binned analysis with bin size set by experimental resolution
- The wino is cornered, but still viable
- Limits become much stronger than $MAGICHESS \geq 10 TeV.$ Our calculation includes continuum photons from signal.

FUTURE DIRECTIONS

- Simple, electroweak thermal relic dark matter…is alive!
- Under pressure in the galactic center, **dSphs offer an orthogonal probe**
-
- Our simple analysis already competitive with MAGIC & HESS
- Can we push to thermal relic exclusion?
	- Take more dSphs data (Ursa Major III as new, attractive target)
	- Extend spatial region
	- Gaussian process modeling for background as in 2405.13104: N. Rodd, B. Safdi, W. Xu.
	- together along with HESS.

• Straightforward to **extend for quintuplet**. Naively, our bound looks stronger than MAGIC at thermal relic mass (14 TeV)

• Combine with other telescopes (à la Glory Duck). MAGIC and VERITAS so close individually, maybe we get there

MAGIC GALACTIC CENTER LIMITS

MAGIC Galactic Center Limits 2212.10527

For cored profiles, MAGIC achieves similar sensitivity to our dSphs result

J-FACTOR COMPARISON

From J. Quinn

2107.09688: BOTtaro et al. 2205.04486: BOTtaro et al.

DIRECT DETECTION?

2107.09688: Bottaro et al. 2205.04486: Bottaro et al.

"MINIMAL DARK MATTER"

 $SU(2)$ quintuplet $(Y=0)$ has neutral DM candidate. • Charged and doubly-charged states with narrow mass splitting. • Keeps SU(2) Landau pole above GUT scale

Cosmologically stable just under SM symmetries

 $O_{\text{decay}} =$ *c* $\frac{c}{\Lambda^2}\chi_{abcd}\,L^aH^bH^cH^d$

 $X^{++/-}$ -

PROJECTED QUINTUPLET LIMITS

X. Ou, A-C. Eilers, L. Necib, A. Frebel: 2303.12838 Some evidence for few-kpc core in Milky Way

SOFT-COLLINEAR EFFECTIVE THEORY

• Large scale-hierarchies can arise within one field

• We can use Renormalization Group to resum kinematic logs

Lightcone momenta $k^+ = k^0 + k^3$ $k = k^0 - k^3$

Integrate out hard modes, separate fields for those collinear to null directions and soft momenta.

SCET OBSERVABLES

Factorized Hilbert Space:

 $\overline{\mathbb{I}}$ $|X_{\text{soft}}\rangle$

EFT Benefit: S & J representation independent! Compute once and for all.

 $d\sigma = H(Q) J(Q, z_{\text{collinear}}) \otimes S(z_{\text{soft}})$

 $S = \langle 0$ $\overline{\mathsf{I}}$ $|(YY)^{\dagger} \delta$ $\sqrt{2}$ $f(z_{\rm soft})$ $\overline{1}$ (*Y Y*) $\overline{\mathsf{I}}$ $\ket{0}$

Soft Wilson Line

 $f(Q, z_{\rm collinear})$ $\overline{1}$ $|X_n\rangle\langle X_n|$ $\overline{\mathcal{L}}$ $|B_{n\perp}|$ $\overline{\mathbf{r}}$ $\ket{0}$

SOFT REFACTORIZATION

H

 $|J_n|$

 $|S|$

S: Perform matching $@M_{x}\sqrt{(1-z_{\text{cut}})}$ $S \rightarrow H_S(M_X\sqrt{(1-z_{\text{cut}})})S(m_W)$???

> Remaining soft: $(p+, p-, p_\perp)$ ~M($\lambda, \lambda, \lambda$) $\lambda = m_W/M_x$

what about measurement function?

 $(1 - z) = \frac{1}{4 \lambda}$ $4\,M_\chi^2$ $m_X^2 \neq$ 1 $4\,M_\chi^2$ $\sqrt{ }$ $i \in X_s$ $p_i^{\mu} + \sum$ $i \in X_c$ p_i^μ \setminus 2 $\equiv (1 - z_s) + (1 - z_c) + \mathcal{O}(\lambda^2)$

BUT…