Learning the energy dependence of a possible point source explanation of the Galactic Center Excess

Eve Schoen | August 26th, 2024 | TeVPA Collaborators: Florian List, Yujin Park, Nick Rodd, Florian Wolf

- What is the Galactic center excess (GCE)?
- How might we tell if it is dark matter or millisecond pulsars?
- Why would a neural network (NN) be good for this job?
- How is our NN currently doing on test data?
- Present the results of NN on the GCE, accounting for the energy
- How does the NN do on injected signals and with mismodeling?

Talk Outline

spectra information for the first time. And comparison to previous works.

The Galactic Center Excess: A potential signal of dark matter

Eve Schoen

(1) What is the neural network learning exactly? \rightarrow Energy Dependent Template Fitting

Fermi bubbles

Eve Schoen

Diffuse

Isotropic

Disk

(1) What is the neural network learning exactly? \rightarrow **Energy Dependent Template Fitting**

Fermi bubbles

Eve Schoen

Diffuse

Isotropic

x 10

Disk

Eve Schoen

N = avg number of sources

Eve Schoen

N = avg number of sources

Eve Schoen

N = avg number of sources

Eve Schoen

N = avg number of sources

Computation complicated by the PSF, the next talk will probably talk about this more!

Eve Schoen

Current performance of the NN on the GCE of Test Maps

F [counts cm⁻² s⁻¹]

11

The GCE energy spectra

Source count distribution of the GCE predicted

13

Testing NN and frequentist method on injected data sets

(GeV/cm²/s/sr) dN/dE \mathbb{E}^2

Eve Schoer

Dim sources

14

Ongoing testing of mismodeling of diffuse emission

Model O

Model F

-

-

- 1. Further systematic checks
- 2. Is the CNN the best NN for the task?
 - •Consider a transformer neural network
- 3. Other ways to validate the NN method
 - Test in the high latitude sky

Next Steps

Key Take Aways

Adding energy dependent information to the NN gives a similar energy spectrum as energy independent NN but...

> the predicted average brightness of sources is dimmer than in the independent case.

Extra Slides

The full loss functions used to train the NN

Spectra:

Histograms:

e=energy bin

t=template

 $\tilde{\mathbf{y}}_{\theta}(\mathbf{x}) = \text{estimated SCD of all}$ models

y= true SCD of all models

 $\tilde{\sigma}_{\theta}^{t,e}(\mathbf{X})$ = statistical uncertainty

 $\tilde{y}_{\theta}^{t,e}$ = estimated counts per model, per bin

 $y^{t,e}$ = true counts per model per bin

$\mathscr{L}^{\tau}(\tilde{\mathbf{u}}_{\theta}(\mathbf{x},\tau),\mathbf{u}) = \frac{1}{N} \sum_{n=1}^{N} \left[(\tilde{U}_{\theta}^{n}(\mathbf{x},\tau) - U^{n})(\tau - I[\tilde{U}_{\theta}^{n}(\mathbf{x},\tau) < U^{n}]) \right]$ n=1

n= the probability bin τ = histogram quantile level $\tilde{\mathbf{u}}_{\theta}^{n}$ = estimated SCD histogram for all models **u**= true SCD histogram for all models

 $\tilde{U}_{\theta}^{n}(\mathbf{x},\tau)$ = Estimated cumulative histogram

- U^n = True cumulative histogram
- I[..] = the indicator function

Florian List. The earth mover's pinball loss: Quantiles for histogram-valued regression, 2021.

The NN fits for point sources in the disk, in addition to in the GCE.

CDF

F [counts cm⁻² s⁻¹]

NN actually learns in CDF space, current results from the NN

GCE

Ī

F [counts cm⁻² s⁻¹]

Related Works

- Florian List. The earth mover's pinball loss: Quantiles for histogram-valued regression, 2021.
- Florian List, Nicholas L. Rodd, and Geraint F. Lewis. Extracting the galactic center excess' source-count distribution with neural nets. Physical Review D, 104(12), December 2021.
- Florian Wolf, Florian List, Nicholas L. Rodd, and Oliver Hahn. A deep learning framework for jointly extracting spectra and source-count distributions in astronomy, 2024.

