Illuminating dark matter with the tip of the red giant branch Aaron Vincent

Institut Canadien de Recherche en Physique des Astroparticules Arthur B. McDonald **Canadian Astroparticle Physics Research Institute**

TeVPA 2024 | University of Chicago | August 26 2023

1 [Based on Hong + ACV arXiv:2407.08773](https://arxiv.org/abs/2407.08773)

Red giant branch

Helium core Hydrogen shell burning

Hertzsprung-Russell Diagram

Tip of the red giant branch

Stars on the **Main Sequence** are powered by hydrogen fusion into He

When H in the core is exhausted, they leave the main sequence and turn into **red giants**

The **tip of the red giant branch** is where the inert helium core ignites from heating to $\sim 10^8$ K. It has an approximately constant luminosity across different stars— it is a **standard candle** 10⁸

Hubble Constant Over Time

Dark matter-nucleus elastic scattering

If this happens here

It also happens here

(a star)

(a direct detection experiment)

Igniting the TRGB early with WIMP dark matter

• When dark matter scatters in a star, it can fall below the local escape velocity

• Trapped particles can meet each other and annihilate

• Lopes & Lopes 2107.13885: dark matter capture and annihilation provides an extra source of heating (from everything except the neutrinos).

• This can lead to **premature ignition** of the helium core in a red giant star.

Igniting the TRGB early with WIMP dark matter

Stellar evolution simulations with no dark matter

Lopes & Lopes 2107.13885

A lot of dark matter

an obscene amount of dark matter

How do we test this?

Globular clusters

Some clusters have wide circular orbits others have more radial orbits that bring them closer to the galactic centre

Gaia DR3: 6d phase space of 161 clusters

Look at globular clusters: populations of $\,\gtrsim 10^{\rm o}$ stars bound in the same orbit $\gtrsim 10^6$

of the Milky Way Galaxy. They are fairly homogeneous, each containing stars with similar ages and metallicities

How much dark matter does a globular cluster "see"?

- Model trajectory over the past few Gyr using
- Gravitational potential (Newton…) from
	- Dark matter
	- Gas
	- Stars
-

• Initial conditions from *Gaia* 6d phase space measurements

Use *Gaia* data + gravitational potential of Milky Way, simulate trajectories of 161 Globular **Clusters**

Determine average **exposure to dark matter** (proxy for capture rate) over past ~ Gyr and model **red giant evolution** in these environments

Milky Way mass distribution Test two representative distributions

de Salas et al 1906.06133 Cautun et al 1911.04557

both use data from Gaia DR2

motivated by DM only sims

**"Pure" NFW

vated** by DM only sims

vated by DM only sims
 Contracted halo

to the *Gaia* data is just as good

Dark matter seen by each Globular cluster

Light: the 161 GCs we have 6d kinematic data from (Vasiliev & Baumgardt 2021)

Dark: the 22 GCs we additionally have TRGB measurements for (HST + ground-based measurements, see Straniero et al. 2010.03833)

Time dependence?

Sid Leach/Adam Block/Mount Lemmon SkyCenter

ESO/J. Emerson/VISTA

Time dependence of the potential follows concentration paramter c(t) from Dutton & Macciò (1402.7073), but not calibrated to MW rotation curve (simulation results)

Upshot: differentiation between clusters is robust

Dark matter capture & stellar modelling

- Modify MESA module from Lopes & Lopes
- Includes dark matter capture based on the local DM density
- Deposit heat in the red giant core
- Evolve a set of 0.8 M_{\odot} stars to the tip of the red giant branch (TRGB).

Mark matter velocity distribution in the star's frac

\n985:
$$
C_{\star}(t) = 4\pi \int_{0}^{R_{\star}} r^{2} \int_{0}^{\infty} \frac{f_{\star}(u)}{u} w \Omega(w) du dr,
$$

\nProbability to scatter $w \to \leq v_{escape}$

\nIntegral over the star

\n
$$
\Omega \propto \sigma_{SI}
$$

At some point, **all** the dark matter intersecting the star is captured.

This overestimates the capture rate: you can't just keep increasing *σSI*

Especially problematic in a red giant: the dense core saturates well before the diffuse envelope

 $dx \sum n_i(r') \langle \sigma_{i,Tot} \rangle$

$$
C_{\star}(t) = 4\pi \int_0^{R_{\star}} r^2 \int_0^{\infty} \eta(r) \frac{f_{\star}(u)}{u} w \Omega(w) du dr,
$$

optical depth to the surface for every line of sight $z = cos\theta$

$$
\eta(r) = \frac{1}{2} \int_{-1}^{1} dz e^{-\tau(r,z)}
$$

Remove flux of particles that may have already scattered on their way in

 $R^2 - r^2(1 - z^2)$

rz

i

Gould's approach:

But this removes **all** particles that have scattered

 $\tau(r,z) =$

Use **optical depth** to *capture*

$$
\tau(r,z) = \int_{r_z}^{\sqrt{R^2 - r^2(1-z^2)}} dx \int du \Omega(w) \frac{wf_{\star}(u)}{u}
$$

Dark matter capture & Saturation

Cluster exposure to dark matter

Preliminary work by Howie Hong (Queen's)

 -1.5

 -2.0

Now we can compare predicted luminosities as a function of DM mass and cross section to the measured ones and extract a limit

Limits

Include errors on NFW shape parameters & propagating errors on the cluster positions and velocities

You are without doubt the worst dark matter limit I've ever heard of.

But you have heard of me.

So what have we learned? Dark matter effects on the TRGB

- You need a **lot** of dark matter to have a visible effect on the TRGB. More than the Milky Way seems to be telling us it contains
- Some space now closed if **local** DM is underabundant?
- Spin-independent dark matter-nucleon cross section limits that are **independent of any Earth/Sun-related systematics**
- TRGB as a **standard candle** seems pretty **robust**.
- **• Unless** our higher-redshift TRGB measurements happen to be in very dark matter-rich environments
- Maybe you can constrain a dark matter spike.

TRGB constraints on millicharged particles Plasmon decay to light particles

Energy loss from plasmon decay leats to a **brighter TRGB**

CONSTRAINTS ON DM MICROPHYSICS FROM MW SATELLITES