Illuminating dark matter with the tip of the red giant branch Aaron Vincent

TeVPA 2024 | University of Chicago | August 26 2023

Institut Canadien de Recherche en Physique des Astroparticules Arthur B. McDonald Canadian Astroparticle Physics Research Institute

Based on Hong + ACV arXiv:2407.08773

Red giant branch

Helium core Hydrogen shell burning

Hertzsprung-Russell Diagram

Tip of the red giant branch

Stars on the **Main Sequence** are powered by hydrogen fusion into He

When H in the core is exhausted, they leave the main sequence and turn into **red giants**

The tip of the red giant branch is where the inert helium core ignites from heating to ~ 10^8 K. It has an approximately constant luminosity across different stars— it is a standard candle

Dark matter-nucleus elastic scattering

If this happens here

(a direct detection experiment)

It also happens here

(a star)

Igniting the TRGB early with WIMP dark matter

• When dark matter scatters in a star, it can fall below the local escape velocity

 Trapped particles can meet each other and annihilate

 Lopes & Lopes 2107.13885: dark matter capture and annihilation provides an extra source of heating (from everything except the neutrinos).

 This can lead to premature ignition of the helium core in a red giant star.

Igniting the TRGB early with WIMP dark matter

Lopes & Lopes 2107.13885

Stellar evolution simulations with no dark matter

A lot of dark matter

an obscene amount of dark matter

How do we test this?

Globular clusters

of the Milky Way Galaxy. They are fairly homogeneous, each containing stars with similar ages and metallicities

Gaia DR3: 6d phase space of 161 clusters

Look at globular clusters: populations of $\gtrsim 10^6$ stars bound in the same orbit

Some clusters have wide circular orbits others have more radial orbits that bring them closer to the galactic centre

How much dark matter does a globular cluster "see"?

- Model trajectory over the past few Gyr using
- Gravitational potential (Newton...) from
 - Dark matter
 - Gas
 - Stars

Initial conditions from Gaia 6d phase space measurements

Use Gaia data + gravitational potential of Milky Way, simulate trajectories of 161 Globular Clusters

Determine average **exposure** to dark matter (proxy for capture rate) over past ~ Gyr and model red giant evolution in these environments

Milky Way mass distribution Test two representative distributions

both use data from Gaia DR2

"Pure" NFW motivated by DM only sims

de Salas et al 1906.06133

Contracted halo motivated by hydro sims

Cautun et al 1911.04557

to the Gaia data is just as good

Dark matter seen by each Globular cluster

Light: the 161 GCs we have 6d kinematic data from (Vasiliev & Baumgardt 2021)

Dark: the 22 GCs we additionally have TRGB measurements for (HST + ground-based measurements, see Straniero et al. 2010.03833)

Time dependence?

ESO/J. Emerson/VISTA

Sid Leach/Adam Block/Mount Lemmon SkyCenter

Time dependence of the potential follows concentration paramter c(t) from Dutton & Macciò (1402.7073), but not calibrated to MW rotation curve (simulation results)

Upshot: differentiation between clusters is robust

Dark matter capture & stellar modelling

- Modify MESA module from Lopes & Lopes
- Includes dark matter capture based on the local DM density
- Deposit heat in the red giant core
- Evolve a set of 0.8 M_{\odot} stars to the tip of the red giant branch (TRGB).

 $T_{\rm eff}$

14

Dark matter velocity distribution in the start
985:
$$C_{\star}(t) = 4\pi \int_{0}^{R_{\star}} r^{2} \int_{0}^{\infty} \frac{f_{\star}(u)}{u} w \Omega(w) du dr$$
,
Probability to scatter $w \to \leq v_{0}$
Integral over the start
 $\Omega \propto \sigma_{SI}$

This overestimates the capture rate: you can't just keep increasing σ_{SI}

At some point, **all** the dark matter intersecting the star is captured.

Especially problematic in a red giant: the dense core saturates well before the diffuse envelope

Gould's approach:

$$C_{\star}(t) = 4\pi \int_0^{R_{\star}} r^2 \int_0^{\infty} \frac{\eta(r)}{u} \frac{f_{\star}(u)}{u} w \Omega(w) du dr,$$

$$\eta(r) = = \frac{1}{2} \int_{-1}^{1} dz e^{-\tau(r,z)}$$

Remove flux of particles that may have already scattered on their way in

optical depth to the surface for every line of sight $z = cos\theta$

But this removes all particles that have scattered

 $\tau(r,z) =$

Use optical depth to capture

$$\tau(r,z) = \int_{r_z}^{\sqrt{R^2 - r^2(1 - z^2)}} dx \int du \Omega(w) \frac{w f_{\star}(w)}{u}$$

Dark matter capture & Saturation

Cluster exposure to dark matter

Preliminary work by Howie Hong (Queen's)

-1.5

-2.0

Now we can compare predicted luminosities as a function of DM mass and cross section to the measured ones and extract a limit

Include errors on NFW shape parameters & propagating errors on the cluster positions and velocities

Limits

PandaX-4T -----

You are without doubt the worst dark matter limit I've ever heard of.

But you have heard of me.

So what have we learned? Dark matter effects on the TRGB

- You need a lot of dark matter to have a visible effect on the TRGB. More than the Milky Way seems to be telling us it contains
- Some space now closed if local DM is underabundant?
- Spin-independent dark matter-nucleon cross section limits that are independent of any Earth/Sun-related systematics
- TRGB as a standard candle seems pretty robust.
- Unless our higher-redshift TRGB measurements happen to be in very dark matter-rich environments
- Maybe you can constrain a dark matter spike.

TRGB constraints on millicharged particles Plasmon decay to light particles

Energy loss from plasmon decay leats to a brighter TRGB

CONSTRAINTS ON DM MICROPHYSICS FROM MW SATELLITES