Search for Neutrino Emission from Compton Thick AGN with IceCube Sreetama Goswami, Ali Kheirandish, Hans Niederhausen for the IceCube Collaboration August 29, 2024. Chicago

Neutrinos: Cosmic Messengers

Active Galactic Nucleus : Primary Candidate

- High luminosity radiation over the entire EM spectrum.
- Jet orientation or obscuration \rightarrow different classes of AGN.
- Seyfert galaxies: Large class of non-jetted AGN
- Obscured AGN: core shrouded in an optically thick torus of gas and dust.

Thorne, Jessica, Robotham, Aaron, Davies, Luke, & Bellstedt, Sabine. (2022).

AGN : Promising Source Class ?

- Meets conditions for neutrino production.
 - Acceleration sites: shocks in jets, magnetically 1. arrested accretion disks
 - 2. Regions with high matter and/or photon density: accretion disk, corona, dusty torus
- No significant correlation with gamma ray sources
 - Neutrino sources opaque to high-energy gamma rays.
 - Added Condition: possibly hidden sources.
 - X-rays can penetrate through gas and dust.

Katz & Spiering (2012)

NGC 1068 : First Evidence from AGN

Seyfert II Galaxy NGC 1068 Source: ESO

Search for neutrino emission using IceCube muon neutrino tracks from Northern Hemisphere.

Observation of an excess of 79 neutrinos at a global significance of 4.2σ from direction of NGC 1068.

Search for Neutrinos from Hard X-ray AGN

- Intrinsic flux in 14-195 keV range used as weights.

Search for neutrino emission by stacking 836 AGN and subclasses various from BASS catalog.

Obscured sources shows highest significance among subclasses with post-trial 2.1 σ observation.

ars	
а	
 10 [!]	5

Search for Neutrinos from Hard X-ray AGN Analysis II : Point Source Search

- Search for neutrinos individually from a list of 43 hard X-ray AGN.

- **NGC 3079** is third most significant source with a local 2.7σ observation.

NGC 4151 shows a global 2.9σ excess. It is the second most significant source observed by IceCube.

NGC 1068 observed a local 4.7 σ . Since it was previously observed, the global significance is not evaluated.

Neutrinos from Bright Seyfert Galaxies

- Search from 27 Bright Seyfert galaxies from BASS catalog.
- Differences with Hard X-ray AGN analysis:
 - Dataset is restricted to Northern Sky.
 - Disc-corona model is tested.
- Results:
 - Catalog search: 2 promising sources apart from NGC 1068 found,
 NGC 4151 and CGCG 420-015.
 - Binomial Search: 2.7 σ without NGC 1068 and 4.0 σ with NGC 1068 posterior.
- Search for neutrinos from Seyferts in the Southern sky shows a 3.0σ emission from a stacking analysis.

See talk by Shiqi Yu

203. Search for neutrino emission from Seyfert Galaxies with IceCube

R. Abbasi et al., 2024: <u>arXiv:2406.07601v1</u>.

Search for Neutrinos from Compton Thick AGN

*New Analysis

Motivation:

- Analyses using X-ray bright AGN show excess from individual sources that disappears in a stacking analysis.
- Many AGN cores are obscured by gas and dust resulting in high uncertainty of flux estimates which was a weight in stacking searches.
- Hidden sources with high levels of obscuration indicate presence of more targets for interaction.

See talk by Jose Carpio 156. Characterizing High-Energy Neutrino Emission Parameters in Bright Seyfert Galaxies and Quasars

Credits: Science NASA, ESA, Alex Filippenko (UC Berkeley), William Sparks (STScI), Luis C. Ho (KIAA-PKU), Matthew A Malkan (UCLA), Alessandro Capetti (STScI), Circular inset: NASA/JPL-Caltech.

Sources for the Analysis

- A catalog of Compton Thick AGN:
 <u>Clemson-INAF Compton thick AGN project</u>
- Compton Thick AGN: highly obscured AGN with column density, $N_{\rm H}>1.5\times10^{24}~{\rm cm}^{-2}$
- Sources selected from the BASS catalog.
- Improvements over previous source selections:
 - NuSTAR observations \rightarrow better estimates of intrinsic flux with lower uncertainty
 - Importance of X-ray flux →
 Hypothesis tested: Intrinsic flux ∝ neutrino flux
 - Better estimates of the intrinsic luminosity and the obscuration levels around the core

Equatorial Coordinates

Skymap in Equatorial coordinates showing the position of the sources in the catalog and the color bar shows the intrinsic flux in the 2 - 10 keV.

Analysis Part 1: Catalog search I. Hypothesis: power law flux

- A combined neutrino dataset of:
 - DNN cascades 9.6 years of shower data
 - ESTES 9.6 years of starting track data
 - •NT 13 years of track data from the northern sky
- Results in the best all-sky sensitivity of all neutrino flavor data.
- Plots shows 90% sensitivity and 5σ discovery potentials for the sources in the catalog.
- Promising source candidates from previous analyses are indicated with arrows.

11

Analysis Part 1: Catalog search (continued)

II. Hypothesis: Disk-corona model

- Plots shows 90% sensitivity and 5σ discovery potentials for the sources in the catalog.
- They are obtained using the combined dataset (all-flavor) and updated disk corona model fluxes.
- Promising source candidates are indicated with arrows.

Summary & Outlook

- Growing evidence points to gamma-ray obscured AGN as primary source of high-energy cosmic neutrinos.
- This is compatible with the multimessenger picture of high-energy neutrinos.
- The search for neutrinos from Compton Thick AGN:
 - Uses a comprehensive estimate for intrinsic X-ray emission available for X-ray bright AGN.
 - Using all flavor neutrino data to achieve best all-sky sensitivity.

Thank you!

Backup Slides

Search of neutrinos from blazars

- - **No spatial correlation** with IceCube data (2009-12) \bigcirc
 - < 27% neutrino in data from blazars (~ 10 TeV and 2 PeV) \bigcirc
- Blazars in Femi 4LAC-DR2 R. Abbasi et al. (Apr 25, 2023)
 - No significant correlation with IceCube Event Catalog of Alert Tracks \bigcirc

Blazars in 2nd *Fermi*-LAT AGN catalogue (2LAC) M. G. Aartsen et al 2017 ApJ 835 45

IceTop-

IceCube Laboratory

Data is collected here and sent by satellite to the data warehouse at UW–Madison

1450 m

Digital Optical Module (DOM) 5,160 DOMs deployed in the ice

2450 m

86 strings of DOMs, set 125 meters apart

. . .

1

1 1

ceCube

etector

Credit: <u>DESY</u>

Amundsen–Scott South Pole Station, Antarctica

- 10-

Cherenkov

Light

A National Science Foundationmanaged research facility

60 DOMs on each string

DOMs are 17 meters apart

v interaction with Antarctic Ice

Credit: <u>spiff.rit.edu</u>

17

Photodetectors

Muon

\ Neutrino

Key observations: TXS 0506 + 056

The IceCube Collaboration, Fermi-LAT, MAGIC, AGILE++ Science 2018 Neutrino alert on September 22, 2017 Neutrino event IC-170922A Evidence for a possible source of high energy neutrino $E_{\nu} \sim 290 \text{ TeV}$

Correlation statistically significant at level $\sim 3\sigma$

Analysis details

- Improved sensitivity by combining datasets with different selection criteria.
- Point source search from a catalog of selected CT AGN.
- Time-integrated stacking analysis with:
 - ➡ intrinsic flux in 2-10 keV regime as weights.
 - ➡ fluxes from disc-corona model as weights.

