

Modulation of Neutrino-Induced Radio Signals by Evolving Polar Ice

Alex Kyriacou - <u>akyriacou@ku.edu</u> Department of Astronomy and Physics University of Kansas

TeV Particle Astrophysics - TeVPA University of Chicago - August 29th, 2024

Polar ice sheets are ideal detection media for ultra-high energy neutrinos (**UHE-v**) $E_v > 10 \text{ PeV}$

- Transparent to radio waves in the MHz GHz regime attenuation length $L_{\alpha} = O(1 \text{ km})$ at 100 MHz to 500 MHz
- Allows for large volumes of ice to be instrumented
- Antennas are also far cheaper than optical modules

RADAR ECHO TELESCOPE

Polar ice sheets are ideal detection media for ultra-high energy neutrinos (**UHE-v**) $E_v > 10 \text{ PeV}$

- Transparent to radio waves in the MHz GHz regime attenuation length $L_a = O(1 \text{ km})$ at 100 MHz to 500 MHz
- Allows for large volumes of ice to be instrumented
- Antennas are also far cheaper than optical modules

Askaryan emission

- Build-up of excess negative charge in the medium
- Coherent radio emission produced at the Cherenkov angle $\theta_{\rm C}$ to the cascade direction defined by the refractive index ($\theta_{\rm C}$ = 56)
- Experiments searching for in-ice Askaryan: RICE, ARA, RNO-G, ARIANNA, ANITA, PUEO, IceCube-Gen2 Radio

8/29/2024

Polar ice sheets are ideal detection media for ultra-high energy neutrinos (**UHE-v**) $E_v > 10 \text{ PeV}$

- Transparent to radio waves in the MHz GHz regime attenuation length L_{α} = O(1 km) at 100 MHz to 500 MHz
- Allows for large volumes of ice to be instrumented
- Antennas are also far cheaper than optical modules

Radar-Echo method:

- Ionization trail persists briefly after UHE-v cascade →acts as a reflective object for in-ice radar.
- Method is currently being tested in the field using UHE cosmic rays: Radar Echo Telescope for Cosmic Rays (RET-CR)
- Verification of the method in nature will facilitate the development of a future RET-N
- See Dylan Frikken's talk HE Astro / Gravitational Waves II (08/26)

8/29/2024

Firn Layer

Firn:

400 kg m⁻³

Firn:

550 kg m⁻³

Sintering

800 kg m⁻³

Pore close-off

830 kg m⁻³

Glacier ice

900 kg m⁻³

RET-CR & In-Ice Askaryan Detectors have antennas within or immediately below the 'firn layer'

'Shallow Firn'

Firn: intermediate stage between fresh fallen settling and grain growth Snow: snow and glacial ice 200 kg m⁻³

- 100 150 m deep in Greenland and Antactic ice caps
- Assuming constant accumulation and temperature:

 $\rho(z) = \rho_i + \Delta \rho \ e^{-kz}$

- Densification rate k changes due to ٠ different dominant process
 - $0 < z < z_{550}$ 'Shallow Firn'
 - Z₅₅₀ < z < z₈₀₀ 'Deep Firn'
 - $z > z_{800}$ 'Glacial Ice'
- The refractive index was found empirically ٠ to be linearly proportional to the firn density [Kovacs et al. 1994]:

 $n = 1 + A(\rho[g/cm^{3}])$

Buizert & Helsen, Glaciers and Ice Sheets in the Climate System, Chapter 11 (Springer)

Density ρ [g/cm³] Firn density profile at Site A, Greenland (1988) -Alley & Koci (1988) – Annals of Glaciology.

8/29/2024

Firn Variation and Evolution

This simple description of Firn is complicated by seasonal fluctuations in temperature:

- Temperature variation leads to fluctuations in firn density
- Episodic surface melting events & rainfall

These lead to the formation of refrozen ice layers & density fluctuations \rightarrow Strongest in the shallow firn layer (z < 15 m at Summit) Predicted Density from Variation of Density

8/29/2024

Firn Variation and Evolution

This simple description of Firn is complicated by seasonal fluctuations in temperature:

- Temperature variation leads to fluctuations in firn density
- Episodic surface melting events & rainfall

These lead to the formation of refrozen ice layers & density fluctuations \rightarrow Strongest in the shallow firn layer (z < 15 m at Summit) Predicted Density from Variation of Density

Firn Variation and Evolution

This simple description of Firn is complicated by seasonal fluctuations in temperature:

- Temperature variation leads to fluctuations in firn density
- Episodic surface melting events & rainfall

These lead to the formation of refrozen ice layers & density fluctuations → Strongest in the shallow firn layer (z < 15 m at Summit) Predicted Density from Average Variation of Density

8/29/2024

Simulation Study: Summit, Greenland

RADAR ECHO TELESCOPE

Variable firn density over time may change the properties of neutrino-induced radio signals To investigate this effect, we use the firn layer at Summit, Greenland as a case study.

Goal: Simulate radio propagation from a deep source to a set of receivers at depths 0 m < z < 200 m, for a geometry of 1km depth x 1km radius (comparable to the attenuation length!) \rightarrow Quantify variation in out E-field trace at RX - $E_{RX}(t)$ for n(z) profiles from different times

Analysis parameters:

- Peak amplitude: $E_{RX,max}$ for direct (D) and reflected/refracted (R) signal
- Time delay between D and R signal: $\Delta t_{DR} = t_R t_D$
- Fluence: $\phi_{RX}^E = \epsilon c \int E_{RX}^2(t) dt$

Radio Simulation Codes (see backup slides for more details):

- MEEP: Direct solution of Maxwell's equations in a geometric grid (FDTD method)
 - Most accurate method but computationally expensive (requires grid resolution $\Delta x \le \lambda/10$)
- **paraProp:** Parabolic-wave approximation of Maxwell's equation within cylindrically symmetry volume
 - Accurate within 'paraxial angle' to the horizontal direction \rightarrow computationally efficient

Simulation Study: Summit, Greenland

Variable firn density over time may change the properties of neutrino-induced radio signals To investigate this effect, we use the firn layer at Summit, Greenland as a case study.

Goal: Simulate radio propagation from a deep source to a set of receivers at depths 0 m < z < 200 m, for a geometry of 1km depth x 1km radius (comparable to the attenuation length!) \rightarrow Quantify variation in out E-field trace at RX - $E_{RX}(t)$ for n(z) profiles from different times

Analysis parameters:

- Peak amplitude: *E_{RX,max}* for direct (D) and reflected/refracted (R) signal
- Time delay between D and R signal: $\Delta t_{DR} = t_R t_D$
- Fluence: $\phi_{RX}^E = \epsilon c \int E_{RX}^2(t) dt$

Radio Simulation Codes (see backup slides for more details):

- MEEP: Direct solution of Maxwell's equations in a geometric grid (FDTD method)
 - Most accurate method but computationally expensive (requires grid resolution $\Delta x \le \lambda/10$)
- paraProp: Parabolic-wave approximation of Maxwell's equation within cylindrically symmetry volume
 - Accurate within 'paraxial angle' to the horizontal direction \rightarrow computationally efficient

1.50

1.45

2020 June

2019 June 2017 June

0.55

1.50

Depth grid size: 10 cm Outputs from each month from 1980 to 2020

•

17.5

20.0

0.35

0.45 0.50

Firn Density $\rho(z)$ [g/cm³]

0.40

8/29/2024

8/29/2024

paraProp Results (z_{TX} = 500 m)

paraProp Results (z_{TX} = 500 m)

paraProp Results ($z_{Tx} = 500$ m)

- Amplitude modulation of the R-signal is an order of magnitude higher than for D-signals
- No significant variation of Δt_{DR}

Refracted trace at z_{RX} = 100 m

Variation of Fluence (2017 vs 2019)

Variation of Fluence (2017 vs 2019)

Variance in RF parameters

Electric field fluence Φ^{E} is proportional to the UHE-v energy E_{v} Time frame: 2015-2020, $|\theta_{v} - \theta_{c}| = 5$

paraProp:

- Reflected: $\frac{\Delta \Phi^{E_{R}}}{\Phi^{E_{R}}} > \sim 0.1 \text{ (x > 600 m)}$
- Direct: $\sim 10^{-3} < \frac{\Delta \Phi^{E}_{D}}{\Phi^{E}_{D}} < \sim 10^{-2}$

Meep:

- Reflected: $\frac{\Delta \Phi^{E}_{R}}{\Phi^{E}_{R}} > \sim 0.1 \text{ (x > 700 m)}$
- Direct:~ $10^{-2} < \frac{\Delta \Phi^{E}_{D}}{\Phi^{E}_{D}} < ~~ 10^{-1} (x > 800 \text{ m})$

Preliminary finding: Under likely signal geometries, shallow firn fluctuations produce systematic uncertainty in the fluence of reflected and refracted signals

 \rightarrow Results in systematic error for neutrino energy and arrival direction reconstruction.

8/29/2024

Measuring firn properties at Summit

- During the May 2024 RET-CR deployment, boreholes were made using a coring drill
- Firn cores were extracted down to a depth of 13 m \rightarrow used to measure the refractive index profile at the RET site in two ways:
 - 1. Direct gravimetric measurement of core density p
 - 2. Open-ended coaxial probe in contact with firn \rightarrow measure the relative permittivity ε_r from the reflected radio energy (method described in backup slides!)

Measuring firn properties at Summit

Measurement procedure

- 1. Slide core through shaping-rig
- 2. Press firn core against coaxial probe
- 3. Measure dielectric properties using coaxial probe method
- 4. Cut core adjustable length (usually 10 cm)
- 5. Measure & log the core segment weight
- 6. Repeat

Shaping Rig

Coaxial Probe

8/29/2024

Results: Permittivity & Density

Reconstructed Density:

- Refractive index and density related empirically n = 1 + 0.845
 ho
- Firn density was broadly consistent with previous measurements made at Summit
 - Hawley & Morris estimated the firn density using neutron scattering measurements in 2008 to 30 m depth
- Evidence of ice layers at z = 7.65, 10.4, & 12.5 m

Reconstructed permittivity (coax probe method): $n=\sqrt{\epsilon_r}$ Analysis ongoing!

- Averaged between 500 MHz and 800 MHz
- Large uncertainty due to frequency variation in the reconstruction (described in backup slides) → not yet explained
 - High conductivity of the firn → frequency-dependent permittivity reconstruction
 - Conductivity of test/calibration materials uncertain
- Correlation between density and permittivity with significant variations

8/29/2024

Summary

Seasonal modulation of radio signals due to ice properties:

- The polar regions are warming rapidly: understanding firn evolution and its modulation of Askaryan and Radar-Echo signals will be important for UHE-v searches
- Under likely signal geometries, shallow firn fluctuations produce systematic uncertainty in the fluence of R-signals, and possibly for neutrino energy reconstruction as well

In-situ measurements of ice properties

- The density profile at the Summit site is broadly consistent with previous measurements with evidence of recent melting events
- Correlation of reconstructed permittivity with density measurements
 - Caution about results: calibration likely incomplete, frequency dependence likely unphysical

Future work:

- Simulating larger geometries 3 km (depth) x 3km (radius)
- Analysis of TX to RX radio propagation at RET site → further insight into ice properties
- Examine seasonal radio modulation at South Pole, Antarctica

Thanks for your attention!

RET May 2024 Deployment Team

Backup Slides

8/29/2024

A A PARTY AND ADDRESS

A. Kyriacou - akyriacou@ku.edu -

26

Askaryan Signal

RF Simulation Methods

RADAR ECHO TELESCOPE

Challenge: Large domain size & need for high spatial resolution to accurately resolve high frequencies -> Cylindrically symmetric medium 1 km radius x 1km depth, frequency range 1 MHz < f < 1000 MHz

MEEP - Finite Difference Time Domain (FDTD) method

- Solves Maxwell's equations inside discrete cells
- Computationally expensive:
 - Cell size $\Delta x \le \lambda/10$ i.e. 8 cm for f = 300 MHz in vacuum
 - Time resolution is related to cell size:

$$\Delta t \leq \frac{1}{c_{medium}\sqrt{(\Delta x^2 + \Delta y^2 + \Delta z^2)}}$$

• Simulations for f > 500 MHz are exceedingly expensive

paraProp - Parabolic Equation:

- Parabolic wave approximation of Maxwell's equations in a cylindrically symmetric medium
- Amplitude and phase residual errors low (<0.01) relative to FDTD within the 'paraxial angle' (θ < 45 deg)
- Computationally efficient -> Tractable for volumes > 1 km and f > 1
 GHz

Continuous wave RF emission at f = 100 MHz from a shallow dipole antenna – simulated with MEEP and paraProp

RF Simulation Methods

RADAR ECHO TELESCOPE

Challenge: Large domain size & need for high spatial resolution to accurately resolve high frequencies -> Cylindrically symmetric medium 1 km radius x 1km depth, frequency range 1 MHz < f < 1000 MHz

MEEP - Finite Difference Time Domain (FDTD) method

- Solves Maxwell's equations inside discrete cells
- Computationally expensive:
 - Cell size $\Delta x \le \lambda/10$ i.e. 8 cm for f = 300 MHz in vacuum
 - Time resolution is related to cell size:

$$\Delta t \leq \frac{1}{c_{medium}\sqrt{(\Delta x^2 + \Delta y^2 + \Delta z^2)}}$$

• Simulations for f > 500 MHz are exceedingly expensive

paraProp - Parabolic Equation:

- Parabolic wave approximation of Maxwell's equations in a cylindrically symmetric medium
- Amplitude and phase residual errors low (<0.01) relative to FDTD within the 'paraxial angle' (θ_{paraxial} < 45 deg)
- Computationally efficient -> Tractable for volumes > 1 km and f > 1
 GHz

Continuous wave RF emission at f = 100 MHz from a shallow dipole antenna – simulated with MEEP and paraProp

Density Measurements:

- Gravimetric: measure the mass of a firn sample with a definite volume
- Neutron Probe: measure the return scatter of neutrons from a radio-isotope

Dielectric Measurements

- Coaxial Probe Impedance Measurement
 - Open-coaxial probe in contact with a dielectric material (including firn and ice)
 - Measure the complex S_{11} (reflection) parameter (amplitude and phase)
 - Approximation of of coaxial probe impedance using equivalence circuit:

$$i \,\omega \big(C_f + \epsilon_r(\omega) \chi \big) + G \left(\epsilon_r(\omega) \right)^{2.5} = \frac{1}{Z_0} \frac{1 - S_{11}}{1 + S_{11}}$$

• Calibration using (3+) materials with known permittivity -> allows you to measure an unknown material

Radio propagation measurements

Density Measurements:

- Gravimetric: measure the mass of a firn sample with a definite volume
- Neutron Probe: measure the return scatter of neutrons from a radio-isotope

Dielectric Measurements

- Coaxial Probe Impedance Measurement
 - Open-coaxial probe in contact with a dielectric material (including firn and ice)
 - Measure the complex S_{11} (reflection) parameter (amplitude and phase)
 - Approximation of of coaxial probe impedance using equivalence circuit:

$$i \,\omega \big(C_f + \epsilon_r(\omega) \chi \big) + G \left(\epsilon_r(\omega) \right)^{2.5} = \frac{1}{Z_0} \frac{1 - S_{11}}{1 + S_{11}}$$

• Calibration using (3+) materials with known permittivity -> allows you to measure an unknown material

S₁₁ Values

- **Example (right):** Measurements of dielectric in the laboratory (KU)
- $\rm S_{11}$ measured using miniVNA (PC controlled VNA)

Materials used for calibration:

- Air
- Teflon (PTFE)
- Polycarbonate

Materials used for testing:

- HDPE
- Acyrlic
- Polyproplyene

The real part of permittivity is most sensitive to the phase of $\ensuremath{\mathsf{S}_{11}}$

8/29/2024

VNA)

Permittivity reconstruction

Measurements in the field:

- Performed over two days → miniVNA needed to be recalibrated 3 times
- Performed with a 5 m RF cable between miniVNA and coaxial head → instrument calibration was incomplete
- High degree of frequency dependence in reconstructed permittivity → likely not physical
- Further work needed

Calibration 0, z = 2.18 m

Calibration 2, z = 9.45 m