

Using Directional Flavour Compositions of

High Energy Astrophysical Neutrinos

to

Constrain Lorentz Invariance Violation

Bernanda Telalovic, Mauricio Bustamante

Niels Bohr Institute University of Copenhagen

Chicago 2024

VILLUM FONDEN

KØBENHAVNS UNIVERSITET

1. What are high energy astrophysical neutrinos?

- 2. How do we know their flavour ratios?
- 3. How can Lorentz Invariance Violation cause anisotropies?
- 4. How much can we constrain the effects with data now?

A cosmic ray produces pions

Pions decay to leptons and neutrinos

Neutrinos oscillate over several Gpc

Neutrinos oscillate over several Gpc

е

 v_e

 ν_{μ}

 $P_{\beta \to \alpha} \sim \sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2$

Neutrinos oscillate over several Gpc

е

 v_e

 ν_{μ}

 $P_{\beta \to \alpha} \sim \sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2$ $U = U_{PMNS}$

Neutrinos oscillate over several Gpc

е

ve

 ν_{μ}

 $P_{\beta \to \alpha} \sim \sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2$ $U = U_{PMNS}$ New physics: different U

Neutrinos oscillate over several Gpc

е

ve

 ν_{μ}

We can reconstruct neutrino energy, direction and **flavour**

We can reconstruct neutrino energy, direction and **flavour**

We can reconstruct neutrino energy, direction and **flavour**

We can reconstruct neutrino energy, direction and **flavour**

Directional high-energy astrophysical neutrino flavor composition: IceCube HESE (7.5 yr)

See: https://arxiv.org/abs/2310.15224

KØBENHAVNS

UNIVERSITE

Directional high-energy astrophysical neutrino flavor composition: IceCube HESE (7.5 yr)

See: https://arxiv.org/abs/2310.15224

Directional high-energy astrophysical neutrino flavor composition: IceCube HESE (7.5 yr)

See: https://arxiv.org/abs/2310.15224

 f_{α} - ratio of flavour $\alpha = e, \mu, \tau$ at Earth

$$f_{\alpha} = \frac{\Phi_{\alpha}}{\sum_{\beta} \Phi_{\beta}}$$
 with $\sum_{\alpha} f_{\alpha} = 1$

 Φ_{α} - flux/amount of ν_{α} neutrinos

- energy integrated: TeV-PeV (HESE range)
- time integrated: 7.5 years at IceCube

$$\frac{d\Phi_{\alpha}}{dE \, dz} = \Phi_0 \rho_0 H_0^{-1} \\ \times [E(z+1)]^{2-\gamma} \\ \times \frac{\rho(z)}{h(z)(z+1)^2} \\ \times \sum_{\beta} P_{\beta \to \alpha} f_{\beta,S}$$

$$\frac{d\Phi_{\alpha}}{dE \, dz} = \Phi_0 \rho_0 H_0^{-1} \\ \times [E(z+1)]^{2-\gamma} \\ \times \frac{\rho(z)}{h(z)(z+1)^2} \\ \times \sum_{\beta} P_{\beta \to \alpha} f_{\beta,S}$$

constants

$$\frac{d\Phi_{\alpha}}{dE \, dz} = \Phi_0 \rho_0 H_0^{-1} \\ \times [E(z+1)]^{2-\gamma} \\ \times \frac{\rho(z)}{h(z)(z+1)^2} \\ \times \sum_{\beta} P_{\beta \to \alpha} f_{\beta,S}$$

constants

$$f_{\alpha} = \frac{\Phi_{\alpha}}{\sum_{\beta} \Phi_{\beta}}$$

$$\frac{d\Phi_{\alpha}}{dE \, dz} = \Phi_{0}\rho_{0}H_{0}^{-1}$$
Anisotropy in flavour oscillation

$$\times [E(z+1)]^{2-\gamma}$$

$$\times \frac{\rho(z)}{h(z)(z+1)^{2}}$$

$$\times \sum_{\beta} P_{\beta \to \alpha} f_{\beta,S}$$

$$\frac{d\Phi_{\alpha}}{dE \, dz} = \Phi_{0}\rho_{0}H_{0}^{-1} \qquad \text{Anisotropy in flavour oscillation} \\ \times [E(z+1)]^{2-\gamma} \\ \times \frac{\rho(z)}{h(z)(z+1)^{2}} \qquad H_{tot} = \frac{1}{2E}U_{PMNS}MU_{PMNS}^{\dagger} + H_{LIV} \\ \times \sum_{\beta} \mathbf{P}_{\beta \to \alpha} f_{\beta,S}$$

$$\frac{d\Phi_{\alpha}}{dE \, dz} = \Phi_{0}\rho_{0}H_{0}^{-1} \qquad \text{Anisotropy in flavour oscillation} \\ \times [E(z+1)]^{2-\gamma} \\ \times \frac{\rho(z)}{h(z)(z+1)^{2}} \qquad H_{tot} = \frac{1}{2E}U_{PMNS}MU_{PMNS}^{\dagger} + H_{LIV} \\ P_{\beta \to \alpha} = \left| \left\langle \nu_{\beta} \right| e^{iH_{tot}L} \left| \nu_{\alpha} \right\rangle \right|^{2} \end{cases}$$

$$\frac{d\Phi_{\alpha}}{dE \, dz} = \Phi_{0}\rho_{0}H_{0}^{-1} \qquad \text{Anisotropy in flavour oscillation} \\ \times [E(z+1)]^{2-\gamma} \\ \times \frac{\rho(z)}{h(z)(z+1)^{2}} \qquad H_{tot} = \frac{1}{2E}U_{PMNS}MU_{PMNS}^{\dagger} + H_{LIV} \\ P_{\beta \to \alpha} = \left| \left\langle \nu_{\beta} \right| e^{iH_{tot}L} \left| \nu_{\alpha} \right\rangle \right|^{2} \\ \text{Averaged over long distances} \end{cases}$$

$$P_{\beta \to \alpha} \sim \sum_{i} |U_{\alpha i}|^2 \left| U_{\beta i} \right|^2$$

$$\frac{d\Phi_{\alpha}}{dE \, dz} = \Phi_{0}\rho_{0}H_{0}^{-1} \qquad \text{Anisotropy in flavour oscillation} \\ \times [E(z+1)]^{2-\gamma} \\ \times \frac{\rho(z)}{h(z)(z+1)^{2}} \qquad H_{tot} = \frac{1}{2E}U_{PMNS}MU_{PMNS}^{\dagger} + H_{LIV} \\ P_{\beta \to \alpha} = \left| \left\langle \nu_{\beta} \right| e^{iH_{tot}L} \left| \nu_{\alpha} \right\rangle \right|^{2} \\ \text{Averaged over long distances} \end{cases}$$

$$P_{\beta \to \alpha} \sim \sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2$$

 $P_{\beta \to \alpha} \sim \sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2$

Lorentz Invariance – no preferred inertial reference frame

Violation – there is a preferred inertial reference frame

$$H_{LIV} = \sum_{d=2}^{\infty} E^{d-2} \sum_{\ell=0,m}^{d-1} \hat{a}_{\ell,m}^{(d)} Y_{\ell,m} + h.c.$$

Parametrises any preferred reference frame in the Universe

See: Standard Model Extension https://arxiv.org/abs/1112.6395

 $P_{\beta \to \alpha} \sim \sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2$

Energy dependence

See: Standard Model Extension https://arxiv.org/abs/1112.6395

 $P_{\beta \to \alpha} \sim \sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2$

Energy dependence

See: Standard Model Extension https://arxiv.org/abs/1112.6395

 $P_{\beta \to \alpha} \sim \sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2$

Energy dependence

effect is strongest at resonance

See: Standard Model Extension https://arxiv.org/abs/1112.6395

 $P_{\beta \to \alpha} \sim \sum |U_{\alpha i}|^2 |U_{\beta i}|^2$

Angular dependence

KØBENHAVNS UNIVERSITET

 $P_{\beta \to \alpha} \sim \sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2$

See: Standard Model Extension https://arxiv.org/abs/1112.6395

 $P_{\beta \to \alpha} \sim \sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2$

KØBENHAVNS UNIVERSITET

See: Standard Model Extension https://arxiv.org/abs/1112.6395

KØBENHAVNS

How do they manifest?

Lorentz-violating high-energy neutrino flavor anisotropy (IceCube HESE 7.5 years)

How do they manifest?

Lorentz-violating high-energy neutrino flavor anisotropy (IceCube HESE 7.5 years)

$$\frac{d\Phi_{\alpha}}{dE \, dz} = \Phi_{0}\rho_{0}H_{0}^{-1} \qquad \text{What flavours are produced?} \\ \times [E(z+1)]^{2-\gamma} \\ \times \frac{\rho(z)}{h(z)(z+1)^{2}} \\ \times \sum_{\beta} P_{\beta \to \alpha} f_{\beta,S}$$

$$\frac{d\Phi_{\alpha}}{dE \, dz} = \Phi_0 \rho_0 H_0^{-1} \\ \times [E(z+1)]^{2-\gamma} \\ \times \frac{\rho(z)}{h(z)(z+1)^2} \\ \times \sum_{\beta} P_{\beta \to \alpha} f_{\beta,S}$$

What flavours are produced?

- assume negligible v_{τ} production
- otherwise, stay agnostic

$$\frac{d\Phi_{\alpha}}{dE \, dz} = \Phi_0 \rho_0 H_0^{-1} \\ \times [E(z+1)]^{2-\gamma} \\ \times \frac{\rho(z)}{h(z)(z+1)^2} \\ \times \sum_{\beta} P_{\beta \to \alpha} f_{\beta,s}$$

What flavours are produced?

- assume negligible v_{τ} production
- otherwise, stay agnostic

$$f_S = (f_{e,S}, 1 - f_{e,S}, 0)$$

$$\frac{d\Phi_{\alpha}}{dE \, dz} = \Phi_{0}\rho_{0}H_{0}^{-1} \qquad \text{What} \\ \times [E(z+1)]^{2-\gamma} \qquad j \\ \times \frac{\rho(z)}{h(z)(z+1)^{2}} \qquad 10^{-24} \\ \times \sum_{\beta} P_{\beta \to \alpha} f_{\beta,S} \qquad \sum_{\substack{\nu \neq 0 \\ \nu = 0 \\ \nu \neq 0 \\ \nu \neq 0 \\ \nu = 0 \\$$

What flavours are produced?

$$f_S = (f_{e,S}, 1 - f_{e,S}, 0)$$

UNIVERSI

Bayesian Procedure

 $\frac{d\Phi_{\alpha}}{dE \ dz}$

 $\frac{d\Phi_{\alpha}}{dE \ dz} \stackrel{\int dE \ dz}{\longrightarrow} \Phi_{\alpha}$

Bayesian Procedure

 $\frac{d\Phi_{\alpha}}{dE \ dz} \stackrel{\int dE \ dz}{\longrightarrow} \Phi_{\alpha} \longrightarrow f_{\alpha}$

Bayesian Procedure

p - measurement in each pixel

- p measurement in each pixel
- $f_{\overrightarrow{\alpha}}$ predicted flavour ratio in that pixel

p - measurement pdf in each pixel $f_{\overrightarrow{\alpha}}$ - predicted flavour ratio in that pixel π - priors on all parameters

- p measurement pdf in each pixel
- $f_{\overrightarrow{\alpha}}$ predicted flavour ratio in that pixel
- π priors on all parameters
- ω all model parameters

p - measurement pdf in each pixel $f_{\overrightarrow{\alpha}}$ - predicted flavour ratio in that pixel π - priors on all parameters ω - all model parameters

We fit each H_{LIV} parameter one-at-a-time

$$d = 2, ..., 8$$

for each d > 3, there are $9d^2$ parameters

Results

Results

Directional info helps!

<u>B. Telalovic</u>, M. Bustamante

KØBENHAVN UNIVERSITET

Take Home Message

Higher cosmic energies are opening the window into our fundamental assumptions about the Universe

Take Home Message

Higher cosmic energies are opening the window into our fundamental assumptions about the Universe

Neutrinos are a unique probe into fundamental physics

Take Home Message

Higher cosmic energies are opening the window into our fundamental assumptions about the Universe

Neutrinos are a unique probe into fundamental physics

TeV-and-beyond neutrinos have a lot to teach us

