

The collective regime

Hochberg et al. [2018]

DM does not interact with just one electron.

The collective regime

Hochberg et al. [2018]

DM does not interact with just one electron.

Response described by complex dielectric function,

$$\boldsymbol{\epsilon}(\mathbf{q}, \boldsymbol{\omega}) = \frac{V_{\text{applied}}}{V_{\text{applied}} + V_{\text{induced}}}$$

 $\begin{cases} \mathbf{q} = \text{momentum transfer} \\ \boldsymbol{\omega} = \text{deposited energy} \end{cases}$

$$\Gamma = \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} |V(q)|^{2} \left[2\frac{q^{2}}{e^{2}} \operatorname{Im}\left(-\frac{1}{\epsilon(\mathbf{q},\omega_{\mathbf{q}})}\right) \right]$$
"Loss function" W

$$\Gamma = \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} |V(\mathbf{q})|^{2} \left[2\frac{q^{2}}{e^{2}} \operatorname{Im} \left(-\frac{1}{\epsilon(\mathbf{q},\omega_{\mathbf{q}})} \right) \right]$$
"Loss function" W

1 Predictable: ϵ admits analytical approximations

$$\Gamma = \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} |V(\mathbf{q})|^{2} \left[2\frac{q^{2}}{e^{2}} \operatorname{Im} \left(-\frac{1}{\epsilon(\mathbf{q},\omega_{\mathbf{q}})} \right) \right]$$
"Loss function" W

Predictable: ε admits analytical approximations
 Empirical: ε is directly measurable / computable

$$\Gamma = \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} |V(q)|^{2} \left[2\frac{q^{2}}{e^{2}} \operatorname{Im} \left(-\frac{1}{\epsilon(\mathbf{q}, \omega_{\mathbf{q}})} \right) \right]$$
"Loss function" W

Predictable: ε admits analytical approximations
 Empirical: ε is directly measurable / computable
 Anisotropic: ἐ is tensorial (background rejection)

3

$$\Gamma = \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} |V(q)|^{2} \left[2\frac{q^{2}}{e^{2}} \operatorname{Im} \left(-\frac{1}{\epsilon(\mathbf{q}, \omega_{\mathbf{q}})} \right) \right]$$
"Loss function" W

Predictable: ε admits analytical approximations
 Empirical: ε is directly measurable / computable
 Anisotropic: ἐ is tensorial (background rejection)

Hochberg+ & BVL 2101.08263; Boyd+ & BVL 2212.04505

1. Data-driven detector design

Materials physics for sensitive experiments

1. Data-driven detector design

Materials physics for sensitive experiments

2. Leveraging detector geometry

Thin-layer enhancement in a real detector

1. Data-driven detector design

Materials physics for sensitive experiments

2. Leveraging detector geometry

Thin-layer enhancement in a real detector

3. Recovering nuclear recoils

Electron recoil detectors do double-duty

[1/3] Data-driven material selection

Sinéad M. Griffin, Yonit Hochberg, **BVL,** Rotem Ovadia, Bethany A. Suter, Ruo Xi Yang

2409.xxxxx

Super-broad material exploration

$$\Gamma = \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} |V(\mathbf{q})|^{2} \left[2\frac{q^{2}}{e^{2}} \operatorname{Im} \left(-\frac{1}{\epsilon(\mathbf{q}, \omega_{\mathbf{q}})} \right) \right]$$
"Loss function" W

2 Empirical: ϵ is directly measurable / computable

Super-broad material exploration

$$\Gamma = \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} |V(q)|^{2} \left[2\frac{q^{2}}{e^{2}} \operatorname{Im} \left(-\frac{1}{\epsilon(\mathbf{q}, \omega_{\mathbf{q}})} \right) \right]$$
"Loss function" W

2 Empirical: ϵ is directly measurable / computable

The Materials Project

Harnessing the power of supercomputing and state-of-the-art methods, the Materials Project provides open web-based access to computed information on known and predicted materials as well as powerful analysis tools to inspire and design novel materials.

Super-broad material exploration

$$\Gamma = \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} |V(q)|^{2} \left[2\frac{q^{2}}{e^{2}} \operatorname{Im} \left(-\frac{1}{\epsilon(\mathbf{q}, \omega_{\mathbf{q}})} \right) \right]$$
"Loss function" W

2 Empirical: ϵ is directly measurable / computable

The Materials Project

Harnessing the power of supercomputing and state-of-the-art methods, the Materials Project provides open web-based access to computed information on known and predicted materials as well as powerful analysis tools to inspire and design novel materials.

$\left. \stackrel{\leftrightarrow}{\epsilon} \right|_{q=0}$ via DFT for **1,019 materials** (out of 154,718!)

Recovering $\epsilon(q > 0)$

Materials Project only computes $\overleftarrow{\epsilon}_{q=0}$

Recovering $\epsilon(q > 0)$

Locate features in $\operatorname{Re}(\epsilon)$ and fit analytical Lindhard functions

Recovering $\epsilon(q > 0)$

Locate features in $\operatorname{Re}(\epsilon)$ and fit analytical Lindhard functions

$$\epsilon_{\rm fit}(\mathbf{q},\omega) = \frac{1}{\sum_k h_k} \sum_{k=1}^{n_{\rm peaks}} h_k \epsilon_{\rm L}(\omega_{{\rm p},k},\Gamma_{{\rm p},k},E;\mathbf{q},\omega)$$

Three most sensitive materials per half-decade

Three most sensitive materials per half-decade

Three most sensitive materials per half-decade

Now evaluating these new materials for use

[2/3] Extra sensitivity from detector geometry

Laura Baudis, Alexander Bismark, Noah Brugger, Chiara Capelli, Ilya Charaev, Jose Cuenca, Guy Daniel Hadas, Yonit Hochberg, Benjamin Kilminster, **BVL**, Severin Nägeli, Titus Neupert, Bjoern Penning, Diego Ramirez, Andreas Schilling (QROCODILE collaboration)

2410.xxxxx

(See also: Lasenby & Prabhu 2110.01587, Hochberg+ & BVL 2110.01586)

8

8

8

Real detectors: SNSPDs

Superconducting Nanowire Single-Photon Detector

Superconducting Nanowire Single-Photon Detector

Thin-layer geometry

9 Hochberg+ & **BVL** 2110.01586

Quantum Resolution-Optimized Cryogenic Observatory for Dark matter Incident at Low Energy

Next-generation SNSPD demonstrator (11 µm threshold)

Quantum Resolution-Optimized Cryogenic Observatory for Dark matter Incident at Low Energy

Next-generation SNSPD demonstrator (11 µm threshold)

Quantum Resolution-Optimized Cryogenic Observatory for Dark matter Incident at Low Energy

Next-generation SNSPD demonstrator (11 µm threshold)

Geometry matters for $q \leq 1/(2 \text{ nm}) \approx 100 \text{ eV}$

Quantum Resolution-Optimized Cryogenic Observatory for Dark matter Incident at Low Energy

Next-generation SNSPD demonstrator (11 µm threshold)

- Geometry matters for $q \leq 1/(2 \text{ nm}) \approx 100 \text{ eV}$
- \implies nontrivial effect for $m_{\rm DM} \lesssim 100 \, \rm keV$

Geometric enhancement

QROCODILE & BVL 2410.xxxxx

[3/3] *Nuclear* recoils in electronic detectors

Sinéad M. Griffin, Guy Daniel Hadas, Yonit Hochberg, Katherine Inzani, BVL

2409.xxxxx

Nature of the excitations

"Broken Cooper pairs"

Nature of the excitations

"Broken Cooper pairs"

Below T_C , transition to superconducting vacuum $|0_{BCS}\rangle$, with a condensate of Cooper pairs: $\langle c_{-\mathbf{k}\downarrow}c_{\mathbf{k}\uparrow}\rangle \neq 0$.

$$c_{-k\downarrow}$$
 (phonons) e^{-} $c_{k\uparrow}$

Below T_C , transition to superconducting vacuum $|0_{BCS}\rangle$, with a condensate of Cooper pairs: $\langle c_{-\mathbf{k}\downarrow}c_{\mathbf{k}\uparrow}\rangle \neq 0$.

$$\mathcal{H} = \sum_{\mathbf{k}\sigma} \xi_{\mathbf{k}} c_{\mathbf{k}\sigma}^* c_{\mathbf{k}\sigma} + \sum_{\mathbf{k}\ell} V_{\mathbf{k}\ell} \left(c_{\mathbf{k}\uparrow}^* c_{-\mathbf{k}\downarrow}^* b_{\ell} + b_{\mathbf{k}}^* c_{-\ell\downarrow} c_{\ell\uparrow} - b_{\mathbf{k}}^* b_{\ell} \right)$$

Below T_C , transition to superconducting vacuum $|0_{BCS}\rangle$, with a condensate of Cooper pairs: $\langle c_{-\mathbf{k}\downarrow}c_{\mathbf{k}\uparrow}\rangle \neq 0$.

$$\mathcal{H} = \sum_{\mathbf{k}\sigma} \xi_{\mathbf{k}} c_{\mathbf{k}\sigma}^* c_{\mathbf{k}\sigma} + \sum_{\mathbf{k}\ell} V_{\mathbf{k}\ell} \left(c_{\mathbf{k}\uparrow}^* c_{-\mathbf{k}\downarrow}^* b_{\ell} + b_{\mathbf{k}}^* c_{-\ell\downarrow} c_{\ell\uparrow} - b_{\mathbf{k}}^* b_{\ell} \right)$$

Diagonalize \mathcal{H} with
$$\begin{cases} c_{\mathbf{k}\uparrow} = u_{\mathbf{k}}^* \gamma_{\mathbf{k}0} + v_{\mathbf{k}} \gamma_{\mathbf{k}1} \\ c_{-\mathbf{k}\downarrow}^* = -v_{\mathbf{k}}^* \gamma_{\mathbf{k}0} + u_{\mathbf{k}} \gamma_{\mathbf{k}1}^* \end{cases}$$

Below $T_{\rm C}$, transition to superconducting vacuum $|0_{\rm BCS}\rangle$, with a condensate of Cooper pairs: $\langle c_{-\mathbf{k}|} c_{\mathbf{k}\uparrow} \rangle \neq 0$.

$$\mathcal{H} = \sum_{\mathbf{k}\sigma} \xi_{\mathbf{k}} c_{\mathbf{k}\sigma}^* c_{\mathbf{k}\sigma} + \sum_{\mathbf{k}\ell} V_{\mathbf{k}\ell} \left(c_{\mathbf{k}\uparrow}^* c_{-\mathbf{k}\downarrow}^* b_{\ell} + b_{\mathbf{k}}^* c_{-\ell\downarrow} c_{\ell\uparrow} - b_{\mathbf{k}}^* b_{\ell} \right)$$

Diagonalize \mathcal{H} with $\begin{cases} c_{\mathbf{k}\uparrow} = u_{\mathbf{k}}^* \gamma_{\mathbf{k}0} + v_{\mathbf{k}} \gamma_{\mathbf{k}1} & Bogoliubov\\ c_{-\mathbf{k}\downarrow}^* = -v_{\mathbf{k}}^* \gamma_{\mathbf{k}0} + u_{\mathbf{k}} \gamma_{\mathbf{k}\downarrow}^* & quasiparticles \end{cases}$

Below T_C , transition to superconducting vacuum $|0_{BCS}\rangle$, with a condensate of Cooper pairs: $\langle c_{-\mathbf{k}\downarrow}c_{\mathbf{k}\uparrow}\rangle \neq 0$.

$$\mathcal{H} = \sum_{\mathbf{k}\sigma} \xi_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \sum_{\mathbf{k}\ell} V_{\mathbf{k}\ell} \left(c_{\mathbf{k}\uparrow}^* c_{-\mathbf{k}\downarrow}^* b_{\ell} + b_{\mathbf{k}}^* c_{-\ell\downarrow} c_{\ell\uparrow} - b_{\mathbf{k}}^* b_{\ell} \right)$$

Diagonalize \mathcal{H} with $\begin{cases} c_{\mathbf{k}\uparrow} = u_{\mathbf{k}}^* \gamma_{\mathbf{k}0} + v_{\mathbf{k}} \gamma_{\mathbf{k}1} & Bogoliubov\\ c_{-\mathbf{k}\downarrow}^* = -v_{\mathbf{k}}^* \gamma_{\mathbf{k}0} + u_{\mathbf{k}} \gamma_{\mathbf{k}1}^* & quasiparticles \end{cases}$

"Electron recoils": $|\chi\rangle|0_{BCS}\rangle \longrightarrow |\chi\rangle|QP_1, QP_2\rangle$

What does the final state look like?

What does the final state look like?

Energetic QPs relax by emission of phonons

What does the final state look like?

- Energetic QPs relax by emission of phonons
- 2 Energetic phonons relax by QP pair production

What does the final state look like?

- Energetic QPs relax by emission of phonons
- 2 Energetic phonons relax by QP pair production

What does the final state look like?

- Energetic QPs relax by emission of phonons
- 2 Energetic phonons relax by QP pair production

Final state is insensitive to initial excitation type

New constraints on scattering

Griffin+ & **BVL** 2409.xxxxx

New constraints on scattering

Data-driven material discovery

Data-driven material discovery

Geometric enhancement

Data-driven material discovery

Geometric enhancement

Nuclear recoils in superconductors

- E. Aprile et al. Constraining the spin-dependent WIMP-nucleon cross sections with XENONIT. *Phys. Rev. Lett.*, 122(14):141301, 2019. doi: 10.1103/PhysRevLett.122.141301.
- R. Caputo, T. Linden, J. Tomsick, C. Prescod-Weinstein, M. Meyer, C. Kierans, Z. Wadiasingh, J. P. Harding, and J. Kopp. Looking Under a Better Lamppost: MeV-scale Dark Matter Candidates. 3 2019.
- Y. Hochberg, Y. Kahn, M. Lisanti, K. M. Zurek, A. G. Grushin, R. Ilan, S. M. Griffin, Z.-F. Liu, S. F. Weber, and J. B. Neaton. Detection of sub-MeV Dark Matter with Three-Dimensional Dirac Materials. *Phys. Rev. D*, 97(1): 015004, 2018. doi: 10.1103/PhysRevD.97.015004.
- S. Knapen, T. Lin, and K. M. Zurek. Light Dark Matter: Models and Constraints. *Phys. Rev. D*, 96(11):115021, 2017. doi: 10.1103/PhysRevD.96.115021.