Particle Shower Simulation Studies for IceCube

TeVPA 2024 Emre Yildizci, Ian Crawshaw Lu Lu, Tianlu Yuan, Anatoli Fedynitch

Outline

- What are particle showers?
- More realistic particle shower simulations
- Future studies using differences between EM and Hadronic showers

Particle showers in IceCube

Emre Yildizci

Particle showers in IceCube Electromagnetic (in nuE CC interactions) Only photons, electrons, and positrons Simpler physics (EM) 1/ d(u)u(d)Hadronic (all interactions) Initiated by hadrons, but involves other particles (including electromagnetic) as well Much more complex to model

Emre Yildizci

Particle showers in IceCube - Cherenkov Emission

- Charged particles traveling faster than speed of light in a medium (c/n) emit **cherenkov light** $\frac{d^2 E}{d\hbar\omega.dx} = \hbar\omega \frac{Z^2\alpha}{\hbar c} \left[1 \frac{c^2}{n^2 v^2} \right]$
- In particle showers $(v \approx c)$:

Emre Yildizci

Cherenkov light \propto # of charged particles \propto # of particles

• Gamma distribution is a good approximation for # of particles in EM showers $1 E (t_{t})^{a-1} - bt$

Outline

- What are particle showers?
- More realistic particle shower simulations
- Future studies using differences between EM and Hadronic showers

IceCube shower simulations

- Neutrino interaction is simulated but hadronization is not
 - Final state hadrons are replaced by generic "Hadrons" particle
- Shower to shower fluctuations in shape is ignored
- Lateral development never explored

FLUKA simulations

V

- FLUKA is a tool for calculations of particle transport and their interactions with matter
- Can be linked with **DPMJET** (3.19) for high energy hadronic interactions
- Able to simulate neutrino interactions, including charm production (for CC only)

"Hadrons'

More realistic shower simulations for IceCube

Shower profiles - EM & Hadronic

First glance observations

Emre Yildizci

- Average shower is not a perfect fit
- Hadronic showers fluctuate more than EM showers

Next: Peak distribution

Shower Profiles - Peak position distribution

Shower Profiles - Peak position distribution

Shower Profiles - Peak position distribution

- Peak position cannot be well described by a single value from average fit
- Hadronic showers have wider distribution
- Next: Try gamma fits to individual showers

$$\frac{\mathrm{d}E}{\mathrm{d}t} = E_0 b \frac{\left(bt\right)^{a-1} e^{-bt}}{\Gamma\left(a\right)}$$

Shower Profiles - Peak position error

Shower Profiles - Peak position (Average fit vs Individual fits)

Shower Profiles - Peak position (Average fit vs Individual fits)

- Significant improvement
- Hadronic showers still have wider distribution
- Individual fits perform better at higher energies for both EM and hadronic
- Next: parameter distribution

EM Showers - Parametrization

- a&b strongly correlated
- No correlation with total energy
- IceCube values (extrapolated) are a little off for high energies

Hadronic Showers - Parametrization

- a&b strongly correlated
- Small correlation with total energy
- IceCube values (extrapolated) are a little off for high energies
- Variations in a&b are larger than EM showers

$\frac{\mathrm{d}E}{\mathrm{d}t} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}$

Next

- Get the a&b distribution at many energy levels and fit splines
- It is a significant improvement to get the fluctuations in shower shape over using an average profile
 - We also investigated some subtle features that couldn't be captured by parametrization

Outline

- What are particle showers?
- More realistic particle shower simulations
- Future studies using differences between EM & Hadronic showers

Future studies using differences between EM & Hadronic

- nuE CC: EM + Hadronic
- All NC: Hadronic
- nuTau CC: Hadronic + (Tau decay)

- Shower properties to be explored
 - \circ Shower extension
 - Lateral shower development

Shower extension

- Signals from extended showers could be separated from localized showers
- We use the last 3% energy deposition position as proxy for shower extension

NC showers and nuTau CC showers have larger extensions

Emre Yildizci

- Most of the emitted Cherenkov photons are very close to the shower axis
- But, information could be obtained from the off-axis photons

- Most of the emitted Cherenkov photons are very close to the shower axis
- But, information could be obtained from the off-axis photons

- Most of the emitted Cherenkov photons are very close to the shower axis
- But, information could be obtained from the off-axis photons

- EM showers are more localized than hadronic showers
 - Muons and other particles in hadronic showers
- How does it translate into the NC showers and nuE CC showers?

Emre Yildizci

 NC showers have more off-axis photons than CC showers • How frequent are these off-axis photons?

Summary

- We are working on a more detailed parametrization of EM and hadronic showers that could introduce fluctuations in shape
- We are studying the possibility of using differences of EM and hadronic showers to distinguish nuE CC events, all flavor NC events and nuTau CC events

Thanks!

Backup

Shower Profiles - Profile shape

- RMS deviation as a proxy for how well the fits describe the shape
- EM showers have smaller deviations from the gamma fits
- Individual fits perform better at higher energies for both EM and hadronic showers

Shower Profiles - Missing energy

- Fraction of hadronic showers are "invisible" (recoil, neutrinos etc.)
- Total cherenkov yield from EM showers also not constant (~1% effect)
- Missing energy fraction decreases at higher energies

Shower extension

 NC showers deposit the last 3% of the energy far later than CC showers on average

 NC showers have more off-axis photons than CC showers

1D Shower Profiles - Root Mean Square Error

- RMS error as a proxy for how well the fits describe the shape
- CC events have smaller deviations from the gamma fits compared to NC events
- Errors are smaller at higher energies

Technical details

Simulated 250 1 TeV nuE CC 200 Number of showers 1 TeV nuEBar CC 5 TeV nuE NC 150 **Choose only** 0 events that 100 deposit 1TeV energy 50

Potential method - 1D shower profile

Particle showers in IceCube - Current state

- Neutrino interaction is simulated but hadronization is not
 - Final state hadrons replaced by generic "hadrons" particle (nugen)
- Shower to shower fluctuations in shape are ignored
- Parametrization is old
 - Pre-LHC models
 - Energy up to 10 TeV

Neutrino Showers Inelasticity distribution

Theoretical calculation cross section as a function of inelasticity

0.05

0.00

0.0

0.2

0.4

Inelasticity

0.6

0.8

1.0

arbitrary y-axis scaling for easier comparison

Probability distribution of inelasticity from Fluka

38

How frequent are "interesting" neutrino showers?

• Fit a gamma function to shower profiles and use RMS error as a proxy for how "anomalous" the profile is

Low RMSE

High RMSE

1 TeV nuECCshowers rms >0.0014 (~0.35%)

How frequent are "interesting" neutrino showers?

 Complementary CDF distribution of RMSE, Pr(RMSE>rmse), for different inelasticity values

High RMSE -> More deviation from gamma function

High inelasticity -> More hadronic energy -> More "interesting" showers

Inelasticity (y) = Hadronic / (Hadronic + EM) for **nuECC**

41