Proton-air interactions at ultra-high-energies in muondepleted air showers with different depths

<u>Miguel Alexandre Martins</u>^{a,*}, Felix Riehn^a, Lorenzo Cazon^a, Ruben Conceição^b

^aInstituto Galego de Física de Altas Enerxías ^bLaboratório de Instrumentação e Física Experimental de Partículas

TeVPA 2024 - Chicago, 26 August 2024

Motivation

Ultra-high energy cosmic rays ($E_0 > 100 \,\text{PeV}$) measured through extensive air showers \implies opportunity to probe hadronic interactions at center-of-mass energies and rapidity regions not covered by human-made accelerators.

15

10

A degenerate problem:

- Unknown mass composition at highest energies;
- Lack of accelerator data in relevant kinematic phase space regions of ۲ CR-air interaction \Rightarrow hamper interpretation of mass composition.

A few current issues with air shower simulations:

- Muon puzzle: underestimation of muon scale in air shower simulations given mass composition from X_{max} (but fluctuations compatible!)
- Inconsistent description of electromagnetic and muonic components of EAS ٠

Use full distributions of shower observables to probe particle production in model independent way from data!

Miguel Alexandre Martins

Muon tail in bins of Xmax

Cascade physics for fixed primary composition

Miguel Alexandre Martins

Muon tail in bins of Xmax

Hadronic physics from tail of distribution of N_{μ}

- N_{μ} highly correlated with fraction of primary energy in hadronic sector of the 1st CR-air interaction α_1 ;
- $\sigma(N_\mu)/N_\mu\simeq\sigma(lpha_1)/lpha_1$;
- Shape of distribution of N_{μ} sensitive to hardness of energy spectrum of hadrons of 1st CR air interaction;

• Softer energy spectrum of π^0 of 1st p-air interaction \Rightarrow steeper tail of $N_\mu \Rightarrow$ probe production crosssection of π^0 in p-air interactions above LHC through measurement of tail of distribution of N_μ

Hadronic physics from tail of distribution of X_{\max}

 Exponential tail from exponential distribution of depths of first interaction:

$$X_0 \sim \exp\left(-rac{X_0}{\lambda_{p-\mathrm{air}}}
ight)$$
 with $\lambda_{p-\mathrm{air}} \propto 1/\sigma_{p-\mathrm{air}}$

Measurement of p-air cross-section with Auger at $\sqrt{s} > 57\,{
m TeV}$:

• Remaining fluctuations from fluctuations of $\Delta X_{\max} = X_{\max} - X_0 \implies$ dominated by fluctuations in particle production in the highest energy interactions \implies possibility to probe such interactions above LHC energies.

Miguel Alexandre Martins

Hadronic physics from the $\ln N_{\mu} - X_{\max}$ plane

Proton primaries \Rightarrow mild anti-correlation between X_{\max} and N_{μ} from highest energy interactions. Anti-correlation decreased by:

- Fluctuations of depth of first interaction X_0 uncorrelated with N_{μ} ;
- Increased muon attenuation in shallower showers \Rightarrow positive correlation with X_{\max} ;

17

(MC + Cascade Equations) simulations \Rightarrow trend independent of energy threshold of muons.

Take home message

• Measuring evolution of Λ_{μ} with $X_{\max} \Rightarrow$ stronger constraints on particle production in the 1st p-air interaction

Miguel Alexandre Martins

14

15

16

 $\ln N_{\mu}$

Hadronic model dependence of Λ_{μ} evolution with X_{max}

- Λ_{μ} evolution with X_{\max} is model dependent;
- Shallow showers: hadronic interaction model predictions are universal (< 10 % model dependence);
- Deep showers: enhanced model dependence of Λ_{μ} reaching 30 %

Multiparticle production variables of 1st interaction per X_{\max} bin

- Shallower showers: tendency for very inelastic 1st p-air interaction with high multiplicity (energy more evenly distributed among secondaries) ⇒ more hadronic activity ⇒ more universal tail.
- Deep showers: tendency for lower multiplicity + more elastic events \Rightarrow less hadronic activity

Take home messages

- Binning in $X_{\max} \Rightarrow$ probe continuously the hadronic activity of 1st interaction;
- $\Lambda_{\mu}(X_{\max})$ evolution constrains models in different regions of the kinematic phase-space of 1st interaction.

Stronger constraints on neutral pion production cross section

arXiv:2406.08620

Recall that Λ_{μ} probes the hardness of the energy spectrum of neutral pions.

• Deep showers \Rightarrow events with fast π^0 of the 1st int. more likely \Rightarrow less muons \Rightarrow flattening of the muon tail.

Take home message:

• Can probe the production cross-section of neutral pions of the 1st p-air collision as a function of the hadronic a activity outside phase-space covered by human-made accelerators!

Miguel Alexandre Martins

Muon tail in bins of Xmax

Feasibility of measurement of Λ_{μ} : the case of Auger

Is it possible to measure $\Lambda_{\mu}(X_{\max})$ with Auger, given:

- Mixed mass composition: p: He : N : Fe?
- Resolution in X_{\max} , N_{μ} and E_0 ?

• Proton-rich and proton-poor composition scenarios estimated from Auger data with $1 < E_0 < 3 \text{ EeV}$

- Mixed mass comp. does not bias Λ_{μ} , BUT resolution in N_{μ} and X_{\max} does!
- Bias is model dependent \Rightarrow apply average bias

correction and consider model systematic.

Miguel Alexandre Martins

Feasibility of measurement of Λ_{μ} : needed statistics

- Model distinction at 1 sigma possible with golden hybrids, regardless of the composition;
- AugerPrime and/or DNNs \implies able to exclude models with 3 sigma significance.

Take home message:

• $\Lambda_{\mu}(X_{\max})$ measurement feasible with Auger statistics!

Conclusions and outlook:

Conclusions:

- Model independente value of Λ_{μ} for shallow showers but highly dependent for deep showers;
- Binning in $X_{\max} \Rightarrow$ continuously probe the hadronic activity of the first interaction;
- $\Lambda_{\mu}(X_{\max})$ evolution constrains models in different regions of the kinematic phase-space of 1st interaction \Rightarrow probe production cross-section of neutral pions in p-air interactions as a function of hadronic activity
- $\Lambda_{\mu}(X_{\max})$ measurement feasible with statistics of a typical UHECR observatory!
- Measuring Λ_{μ} as a function of the primary energy by combining different experiments would probe the cross section for neutral pion production as a function of projectile energy \Rightarrow compare with/ extrapolate safely from accelerator data.
- More details in: <u>arXiv:2406.08620</u>

Outlook:

• Fully explore the joint $N_{\mu} - X_{\max}$ distribution to constrain particle production in the highest energies.