

The multi-wavelength signature of the multi-zone jets of Markarian 421

Dimitrios Kantzas (<u>kantzas@lapth.cnrs.fr</u>) LAPTh/CNRS

with Francesca Calore and Marco Chianese

Image Credit: NASA/JPL-Caltech

Active galactic nuclei (AGN)

AGN jets

HST & VLA image of Hercules A

jets

Image Credits: NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA)

Theoretical studies of AGN jets (simulations)

Theoretical studies of AGN jets (simulations)

General Relativistic MagnetoHydroDynamic (e.g. Chatterjee et al. 2019)

Pros

- Large-scale dynamics
- Morphology
- •

Cons

- No particle acceleration
- No radiation
- •

Particle-in-cell simulations (e.g. Sironi et al. 2016)

Pros

- Fundamental equations
- Particle acceleration
- Cons

 \sim

- Small scales
- Short timescales

Theoretical studies of AGN jets (semi-analytical)

BHJet: a multi-zone model (Lucchini..., DK et al. 2022)

Image Credit: T. Revolta

BHJet: the main ingredients (I)

(Lucchini..., DK et al. 2022)

BHJet: the main ingredients (II)

(Lucchini..., DK et al. 2022)

particles

E_{min}

slope (p)

particle energy

Image Credit: T. Revolta

Ē_{ma}

Jet composition and radiative processes

Leptonic scenario

- Non-thermal electrons
 - protons carry the mass of the jet

• Synchrotron

- thermal & non-thermal
- Inverse Compton
 - synchrotron-self & external
- Pair annihilation & production

See, e.g. Markoff et al. 2005; Lucchini et al. 2019; <u>2022</u>

Lepto-hadronic scenario

- Non-thermal electrons & protons
 - uncertain lepton-to-proton ratio
- Synchrotron
 - thermal & non-thermal & protons
- Inverse Compton
 - synchrotron-self & external
- Pair annihilation & production
- Hadronic processes
 - Proton-proton, photomeson & Bethe-Heitler

See Kantzas et al. 2021; 2023

The multi-wavelength emission

The study case of Markarian 421

- BL Lac object
- @122Mpc (z=0.0308)
- The 1st extragalactic TeV source (Punch et al. 1992)
- One of the brightest quasars

SDSS

The multi-wavelength spectrum of Markarian 421

Archival data from SSDC SED builder

(e.g., BeppoSAX, VERITAS, TIBET, TACTIC, HESS, ARGO, MAGIC, EGRET, AGILE, Fermi, INTEGRAL, MAXI, XMM, RXTE, Swift, WISE, Sloan, NED et al.)

The multi-wavelength time-variability

Best-fit of the Steady state with BHJet

The Steady state

parameter	value
p ₁	2.3
р ₂	4.7
E _{break} (GeV)	100
δ	38
B (G)	0.048
u _e /u _B	70.6
R (r _g)	2

Bartoli et al. 2016

Comparison

parameter	value	
P ₁	2.3	
p ₂	4.7	
E _{break} (GeV)	100	
δ	38	
B (G)	0.048	
u _e /u _B	70.6	
R (r _g)	2	

particle acceleration mechanism ?

<u>Bartoli et al. 2016</u>

Dimitrios Kantzas | TeVPA C¹

preliminary

52	parameter	value
	p ₁	1.83
	E _{break} (GeV)	155
3	δ	42
Sol	B (G)	0.4
	u _e /u _B	7.4
-	R (r _g)	36
	z _{diss} (r _g)	435
	N _j (L _{Edd})	0.0007
a construction of the second		

Kantzas et al. in prep

Open questions and next steps

• Jet composition?

- Proton acceleration? (see e.g. Dimitrakoudis et al. 2014; Cerruti et al. 2015; Stathopoulos et al. 2022; ...)
- Neutrino emission? (see Padovani & Resconi 2014 – possible neutrino counterpart while in steady state)

neutrino emission (2011 May 04)?

Conclusions

AGN jets

HST & VLA image of Hercules A

Jets • magnetic field • composition

• size

We understand better the magnetic field and the jet morphology, but we still struggle with the jet composition.

Image Credits: NASA, ESA, S. Bourn and C. O'Des (RIT) R. Perley and W. Cotton (NRAC/AUI/NSF), and the Hubble Heritage Team (STScI/AURA

jets