The Radio Neutrino Observatory in Greenland (RNO-G)

Aishwarya Vijai on behalf of RNO-G PhD Student at the University of Maryland

Instrumentation Overview

Importance of Neutrinos

AGNs, SNRs, GRBs..

Cosmic rays

They are charged particles and

are deflected by magnetic fields.

Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

Neutrinos

They are weak, neutral particles that point to their sources and carry information from deep within their origins.

Earth

....

air shower

Cosmic Ray Interactions produce neutrinos

black

holes

Cosmic Ray Acceleration How are cosmic rays accelerated to energies as high as 10^{20} eV?

Cosmic Ray Composition Are cosmic rays primarily made of protons?

Scientific Motivation

Expect > 10 PeV Astrophysical and Cosmogenic neutrinos (ultra high energy, UHE)

• Mean Free path of PeV Neutrinos ~ 10^7 meters, <1/km³/yr

Need a large detector on the scale of tens of km³ in the form of RNO-G

UHE (> 10 GeV) neutrinos interact with ice producing shower of relativistic secondary particle

5

UHE (> 10 GeV) neutrinos interact with ice producing shower of relativistic secondary particle

Negative net charge of shower emits a cone of Cherenkov radiation

6

UHE (> 10 GeV) neutrinos interact with ice producing shower of relativistic secondary particle

Negative net charge of shower emits a cone of Cherenkov radiation

Coherent amplification in radio

UHE (> 10 GeV) neutrinos interact with ice producing shower of relativistic secondary particle

Negative net charge of shower emits a cone of Cherenkov radiation

Coherent amplification in radio

Few 100 MHz Pulse

Radio Neutrino Observatory in Greenland

Array of 35 stations, 8 built so far

Greenland Ice Attenuation length ~O(1km)

Summit Station, Greenland

RNO-G Collaboration

VPols

Reconstruct vertical polarization of incoming signal

		20m	
Power St	tring	110-	1
₹ -40m			
-60m (
-80m			8
-100m-			

Helper String 2

A single RNO-G station

VPols

Reconstruct vertical polarization of incoming signal

HPols

Reconstruct horizontal polarization of incoming signal

	Heiper
2	20m
Power String	
ξ	
-40m 🌒	
-60m 🌘	
in the second	
-80m	
	Į
-100m	
Toom	

Helper String 2

A single RNO-G station

VPols

Reconstruct vertical polarization of incoming signal

HPols

Reconstruct horizontal polarization of incoming signal

Power String

Triggering on neutrino events

Helper String 2

A single RNO-G station

VPols

Reconstruct vertical polarization of incoming signal

HPols

Reconstruct horizontal polarization of incoming signal

Power String

Triggering on neutrino events

		20m	
Power	String	1 hr	IIIs
≹ -40m			
-60m	•		
-80m	•		8
-100m-	•		

A single RNO-G station

Helper String 2

Helper String

Reconstructing neutrino energy/ direction and calibration

alibration Puls

VPols

Reconstruct vertical polarization of incoming signal

HPols

Reconstruct horizontal polarization of incoming signal

Power String

Triggering on neutrino events

		20m	
Power	String	11 m	IIII
-40m	•		
-60m	•		
-80m	•		
-100m-			

LPDAs

Surface antennas to distinguish between signals going up through and down through detector

Air shower veto

A single RNO-G station

Helper String

Reconstructing neutrino energy/ direction and calibration

RNO-G Deployment

Stations run on solar power and each station draws ~ 25W

RNO-G Hardware Response Overview

RNO-G Hardware Response

VPols: Broadband, highly reproducible antennas

VSWR

RNO-G Hardware Response

HPols: Good simulation-data agreement

RNO-G Hardware Response

IGLU: In Ice Gain with Low Power Unit DRAB: Downhole Reciever and Amplifier <u>Board</u>

DRAB

RNO-G Hardware Response IGLU: In Ice Gain with Low Power Unit

IGLU: In Ice Gain with Low Power Unit DRAB: Downhole Reciever and Amplifier Board

Immediate analog to RFoF (radio frequency over fiber) signal conversion ensures uniform response for phasing and prevents attenuation during transmission to surface

Custom designed low power (~140 mW) and minimal noise temperature

(< 150 K)

RNO-G Hardware Response RADIANT: Radio Digitizer and Auxillary Neutrino Trigger

RADIANT

24 Channel digitizer at 2.4 GS/s capable of in-situ timing and calibration

RNO-G Hardware Response FLOWER: Flexible Octal Waveform Recorder

FLOWER RNO-G Trigger Board

Trigger Efficiency Study Efficiency of the 2/4 multiplicity trigger as a function of SNR using calibration pulses

*STUDY IS STILL IN PROGRESS Trigger Efficiency Study

With the phased array trigger, lower this to ~ 2

neutrino detection among antennas phased array trigger threshold in the field

Conclusion

- Radio neutrino detection optimizes chances of >10 PeV
- Low power RF system allows for **increased livetime**
- Good simulation-data agreement and reproducibility
- In-situ trigger efficiency studies reflect the current trigger threshold that will be improved upon with the
- OPhased array trigger will give **lowest signal trigger**

Backup Slides

Astrophysical Neutrinos **Produced through interactions of cosmic rays at sources**

Proton-Photon ($p\gamma$ **) Interaction** $p + \gamma \rightarrow p + \pi^0$

Proton-Proton (*pp***) Interaction**

 $p + p \rightarrow D + e^+ + v_{\rho}$

Beta Plus Decay $p \rightarrow n + e^+ + \nu_e$

Cosmogenic Neutrinos Cosmic ray interactions produce unstable particles that decay

Neutrino Interactions

Neutrinos interact very rarely and need large detectors

Deeply Inelastic

> 10 GeV neutrinos pry apart nucleons

Mean Free Path

1 PeV neutrinos $\rightarrow 10^7$ m

Interaction Cross Section

 $10^{-58} cm^2$ to $10^{-31} cm^2$ for neutrino energies from 10^{-2} to $10^{18} \, \text{eV}$

Detection Mechanism

Detect (> 10 GeV) neutrinos through deep inelastic neutrino-nucleon interactions

Deep Inelastic Neutrino-Nucleon Interactions

 $n \rightarrow p^+ + e^- + \nu_e^-$ (neutron decay)

Nucleon Decay

 $p^+ \rightarrow n + e^+ + \nu_{\rho}$ (beta plus decay)

Cherenkov Emission

Particles in cascade that travel faster than speed of light in medium release blue ("optical") light

Askaryan Emission

• $e^+ + e^- - > 2\gamma$

- Photons ionize atoms to release free e^- or knock out loosely bound electrons
- Excess negative charge radiates
- Radiation at ~10 cm constructively interferes (coherent amplification in radio)
- Constructive interference at lengths > cascade size (~ 10 cm)

eres

Askaryan Emission Signal Strength

- Signal strongest at Cherenkov angle (56°)
- Coherence lost at higher frequencies first due to destructive interference
- Signal amplitude \propto number of e^-
- Signal amplitude $\propto \frac{1}{R}$, R = distance from vertex
- Attenuation length in ice for 75 MHz signal was ~900 meters (temperature dependent)
- 0.1-1 GHz radio pulse detected by antennas

Radio and Optical Neutrino Detection

	Radio	Optical
Detection Mechanism	Askaryan Emission	Cherenkov Emission
Detection Instrument	Radio Antennas	PMTs (Photomultiplier Tubes)
What is detected?	0.1 - 1 GHz radio pulse	Blue light ("optical")
Suitable Energy Range	>1PeV	< 1 PeV
Scattering and Absorption Length	15-60 m (scattering) 60-200 m (absorption)	10-20 m (scattering) 50-100 m (absorption)
Instrumentation Density	Lower for same effective volume	Higher for same effective volume

History of Radio Neutrino Detection

Radio Ice Cherenkov Experiment (RICE)

- 1995-2010, located at South Pole
- Place first limit on UHE neutrino flux and insight to radio frequency ice properties

Askaryan Radio Array (ARA)

- RICE direct successor at South Pole
- Developed interferometric trigger array improving radio neutrino detection efficiency by factor of 1.8

History of Radio Neutrino Detection

Antarctic Ross Ice-Shelf Antenna Neutrino Array (ARIANNA)

- Used solar power and wind turbines for 90% detector uptime

• Deployed antenna below snow surface (7 shallow/surface stations with 4 antennas each) 38

VPol Construction and Testing at UMD **Purpose: Need good antennas to detect small signals**

VSWR ~ 1 => S11 ~ O

Very little power reflected from input indicating better performace

Repeatability across 100 antennas

RNO-G Backgrounds Major Hurdle: Separating Neutrino-Induced Signals from Background

Thermal Noise

- Noise in ice due to random motion of electrons
- Uncorrelated across lacksquareantennas

Anthropogenic Noise

Human-made noise identifed through reconstruction

h ~ 35 km

 $N = 10^{6}$

Air Showers

- Cosmic rays interact with atoms in atmosphere
- LPDA surface array to separate this background

RNO-G In-Situ Trigger Efficiency Studies Motivation: Obtain instrument's sensitivity with current trigger

Methodology

- Calibration pulses that mimic neutrino signal and trigger 2/4 hit multiplicity
 - Pulses emitted at range of attenuations (0-32 dB) (pulse goes through attenuator)
- Find efficiency of 2/4 hit multiplicity trigger as a function of SNR
- Trigger efficiency and SNR first mapped to attenuation
- Utilizing data from station 23 run 3400

Trigger Efficiency

- Trigger Efficiency_{att} = $\frac{pulses \ triggered_{att}}{pulses \ emitted_{att}}$
- 100 pulses at each attenuation
- Error bars: Wilson Confidence interval
 - Asymmetrical error bounds contained between o and 1 (no overshoot)

Signal to Noise Ratio (SNR)

•
$$SNR = \frac{V_{max} - V_{min}}{2 \times RMS_{noise}}$$

- RMS_{noise} \bullet
 - Noise identified by force trigger (triggers at regular intervals (0.1 Hz)
 - Unique for each channel
- Used 2nd higher SNR across 4 channels for each event
 - Higher SNR = more likely to trigger

SNR vs Attenuation

- Average SNR at each attenuation
- Error bars = standard deviation of SNR
- Exponential fit from 6-15 dB
- Low attenuation: pulses saturate fiber optic
- High attenuation: not enough events
- Used exponential fit parameters to • calculate SNR over 0-32 dB

Event SNR vs Attenuation

44

- Applied additional low pass filter to RADIANT data to compare to Flower Board
- Applied additional high pass filter (Butterworth filter, order 8, cutoff frequency 0.05 MHz) to reduce out of band noise
- Filtering cuts high frequency power of pulse, reducing peak-to-peak voltage and SNR \bullet

Flower Board

RNO-G's trigger board configured to trigger on $5 \times RMS_{noise}$

Effect of Low Pass Filter

Frequency domain of the signal

46

Trigger Efficiency vs SNR

• Logistic Function Fit

•
$$f = \frac{1}{1 + e^{-k(x - x_0)}}$$

- *k* = steepness/growth rate
- $x_0 = 4.89 \pm 0.05$, agrees with flower board (50% efficiency point)
- $\frac{\chi}{dof} = 1.06$, p-value = 0.37

