

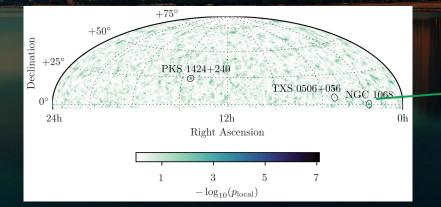
For the IceCube collaboration

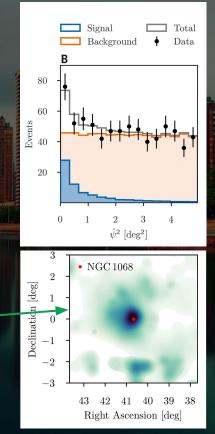
IceCube Search for High Energy Neutrino Emission from X-ray Bright Seyfert Galaxies

August 27th, 2024

TeVPA 2024, U of Chicago, U.S.

Shiqi Yu, U of Utah/MSU Theo Glauch, TUM Ali Kheirandish, UNLV Tomas Kontrimas, TUM Qinrui Liu, Queen's U Hans Niederhausen, MSU


ımade credi


Motivation: NGC 1068

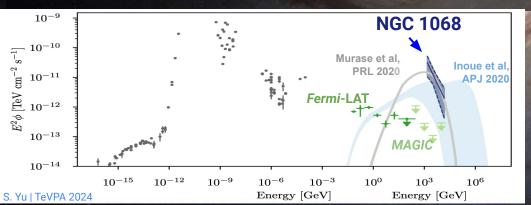
All-sky scan found hot spot at NGC 1068 location.
In catalog search (110 sources), at NGC 1068:
79 candidates; spectral index = 3.2 ± 0.2

> single source significance 5.2 σ (local)

4.2 σ post-trial significance of evidence!

2

Image credit: NASA

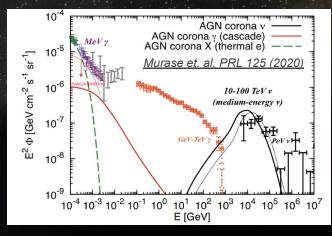

Why NGC 1068?

Seyfert galaxy Compton thick environment, column density ~10²⁵ cm⁻²

High level of star formation Bright in X-ray High-energy gamma-ray likely to be obscured Proposed possible source of high-energy CR and neutrinos: Silberberg, Shapiro (1979, 1983)

Where could neutrinos be produced?

Murase and Stecker arXiv:2202.03381


- starburst activity
- AGN outflows/winds
- 🛛 faint jet
- AGN core region (e.g. corona)

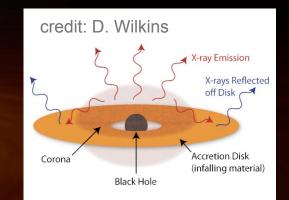

Find more similar sources! More model-dependent studies on neutrino emission₃ are needed!

Image credit: NASA/JPL-Caltech

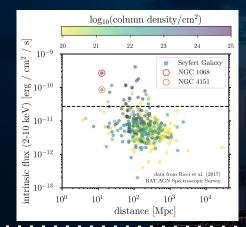
Disk-corona Model

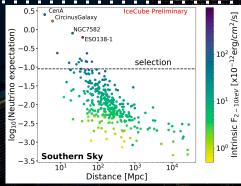
- In Seyfert galaxies, magnetized coronae are formed due to accretion and magnetic dissipation;
- The disk-corona model* suggests coronae are best neutrino source candidates where ions are accelerated while high-energy gamma rays are absorbed;
- Intrinsic X-ray luminosity is used to predict neutrino flux: L_v ∝L_{X-ray (intrinsic)}

Bright X-ray emission

*Kheirandish+ ApJ 2021

S. Yu | TeVPA 2024


Source Selection


NGC1

Select from <u>BASS</u> → Seyfert Galaxies → Bright in 2-10 keV X-ray

The BAT AGN Spectroscopic Survey all-sky study of the brightest and most powerful hard X-ray detected AGN

27 (+NGC 1068) sources Northern Sky

ES0138-1

14 sources

Centaurus A Circinus NG

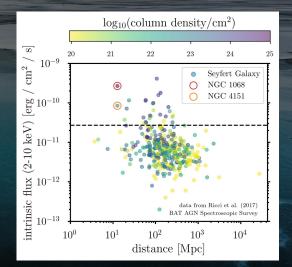
NGC4151

MGC7582

S. Yu | TeVPA 2024

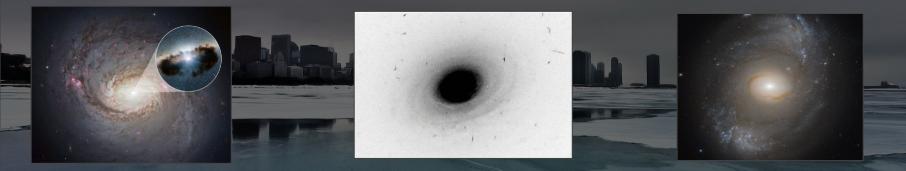
Northern Sky

• Same Northern Sky Muon Track sample as <u>IceCube Science</u> <u>2022</u> with ~1.7 yr more data (~20% increase in statistics);


See talk by <u>Tomas, Aug 26th, TeVPA2024</u>

Catalog:

• Disk-corona model vs. power-law spectrum Stacking:

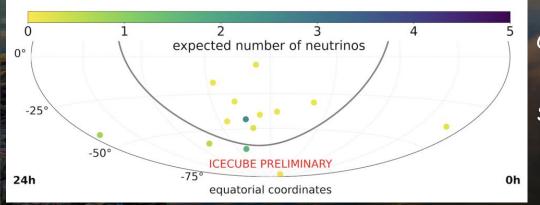

Disk-corona model with weights = n_{exp}

* NGC 1068 is excluded (27 sources) to avoid bias. S. Yu | TeVPA 2024

Northern Sky Result Highlight

In addition to NGC 1068, 2 sources have pre-trial significances above 30.

NGC 1068 ~14 Mpc ~7 Log(M_{BH}/M☉) LogL_x^{2-10keV}~42.9 erg/s (NuSTAR and XMM-Newton: LogL_x^{2-10keV}~43.8 erg/s) *CGCG* 420-015 ~130 Мрс ~8.3 Log(М_{ВН}/М⊙) LogL_X^{2-10keV}~44 erg/s NGC 4151 ~16 Mpc ~7.6 Log(M_{BH}/M☉) LogL_X^{2-10keV}~42.3 erg/s


S. Yu | TeVPA 2024

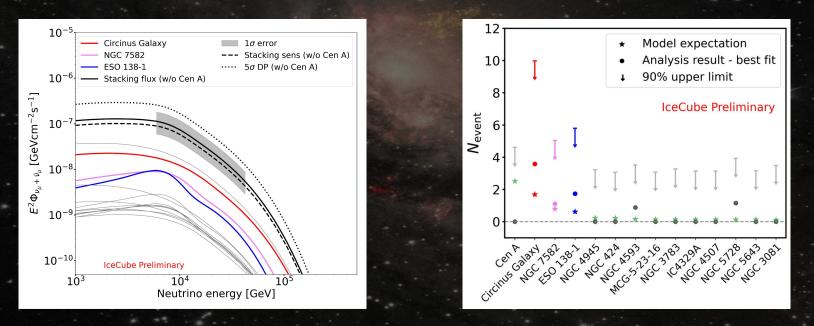
S. Yu | TeVPA 2024

Southern Sky Analyses

- Use starting track events (ESTES sample)* •
- Improved analysis methods are applied:
 - Some sources are close to the galactic plane 0
 - Mask out galactic plane region (+/- 10 deg) before background scrambling 0
 - Inject Monte-Carlo events using IceCube result** as the realization of 0 **Science 380,1338-1343(2023)

galactic plane

Catalog:


- Disk-corona model vs. power-law spectrum Stacking*:
 - Disk-corona model with weights = n_{exp}
 - * CenA is excluded from stacking to avoid bias.

*PhysRevD.110.022001

Starting track

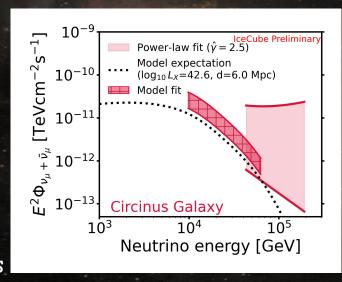
Southern Sky Results: stacking & catalog

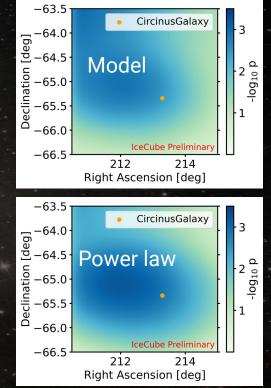
 3.0σ excess (ns=6.7) in stacking using model flux and expectations as weights (shade shows error)
 Top three sources (excluding CenA) have mild excess

Southern Sky Result: Catalog Search

- See mild excess from the top three sources in the selected catalog with both flux assumptions;
- Southern hemisphere suffers from low-statistics.

$n_{ m exp}$	\mathbf{TS}	$\hat{n}_{ m s}$	$\hat{\gamma}$	$p_{ m local}$	$p_{ m global}$	90% U.L.		
						n_{event}		
1.7	6.7	3.6	—	$0.003(2.7\sigma)$	$0.042(1.7\sigma)$	10.0		
0.6	3.0	1.7	<u> </u>	$0.03(1.9\sigma)$		5.7		
0.8	1.4	1.1	<u> </u>	$0.05(1.6\sigma)$	1 <u></u>	5.1		
						$\Phi(\text{TeV}^{-1}\text{cm}^{-2}\text{s}^{-1} \text{ at } 1\text{TeV})$		
—	10.4	3.1	2.5	$0.001(3.1\sigma)$	$0.017(2.1\sigma)$	63.8×10^{-11}		
_	1.7	1.7	4.0	$0.05(1.6\sigma)$		$25.6 imes 10^{-11}$		
-	3.0	1.9	3.6	$0.06(1.6\sigma)$	_	29.7×10^{-11}		
	1.7 0.6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.7 6.7 3.6 - $0.003 (2.7 \sigma)$ $0.042 (1.7 \sigma)$ 0.6 3.0 1.7 - $0.03 (1.9 \sigma)$ - 0.8 1.4 1.1 - $0.05 (1.6 \sigma)$ - - 10.4 3.1 2.5 $0.001 (3.1 \sigma)$ $0.017 (2.1 \sigma)$ - 1.7 1.7 4.0 $0.05 (1.6 \sigma)$ -		


Hottest source: 3.1o -> 2.1o (14 sources)=> post-trials 1.8o (2 flux assumptions)


Southern Sky Result: Circinus Galaxy

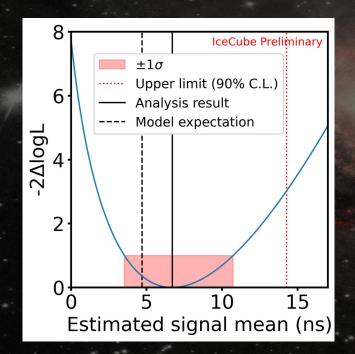
Circinus Galaxy has pre-trial significance at 30 using power-law flux.

- ~6 Mpc
- ~11 Log(M_{BH} /M^O)
 X-ray luminosity of LogL_X^{2-10keV} ~42.6 erg/s
 L₁/L_x < 3.1%

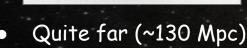
Southern Sky Result: Discussions

- There are no individual bright sources from the catalog search result using ESTES sample in the Southern hemisphere likely due to limited statistics;
 - A follow-up analysis will combine the cascade and starting track events aim to improve the discovery potential in the Southern hemisphere.
- Using disk-corona model in stacking shows 3.00 excess suggests there might be a population of Seyfert as candidates of cosmic-ray accelerator.

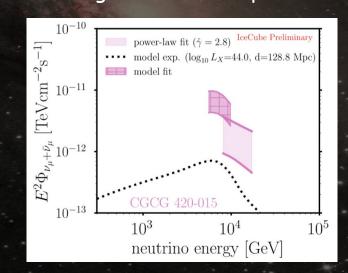
Summary and Outlook

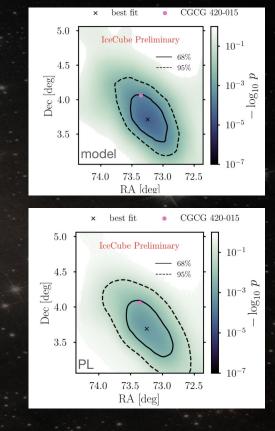

- → Disk-corona model is employed in catalog and stacking searches to study high-energy neutrino emission from X-ray bright Seyfert galaxies.
- → In Northern hemisphere: arXiv:2406.07601
 - Catalog search hints two additional sources: NGC 4151 and CGCG 420-015 with 2.75 while no significant excess observed in stacking search;
 - More high-energy neutrino sources in other IceCube talks *See talks by <u>Tomas (Aug 26)</u> and <u>Sreetama (Aug 29)</u>
- \rightarrow In Southern hemisphere:
 - 3.0σ excess from stacking search while no significant excess observed with the individual;
 - Suggests emerging picture of X-ray bright Seyfert galaxies as candidates of cosmic-ray accelerator.
 - **Follow-up analysis** combines cascade and track events aim to improve the searching sensitivity.
 - Future identification is promising with input from multi-messenger data and next-generation neutrino telescopes.

Thank you!


Overflow slides

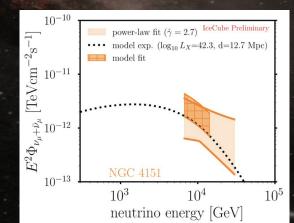
Southern Sky Result: Stacking

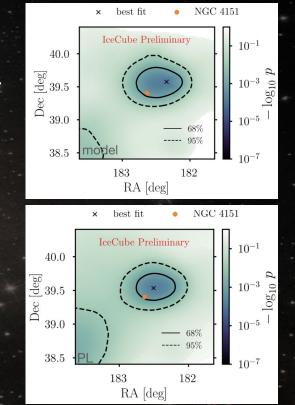

Best-fit ns: 6.7 1σ error: [3.5, 10.7] U.L.: 14.3 Significance: 3.0 sigma 1σ error: [3.002, 3.006]


Northern Sky Result: CGCG 420-015

- Supermassive BH: 2×10⁸
 M[⊙]
- High X-ray luminosity
 (LogL_x^{2-10keV} ~44 erg/s)
- Compton thick, highly obscured

Model fit finds better significance and localization.
The best-fit flux is a factor of ~10 larger than the expectation

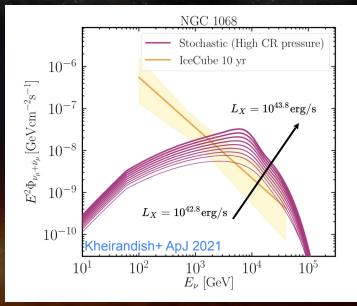



Northern Sky Result: NGC 4151

- ~16 Mpc
- ~4×10⁷ M☉
- X-ray luminosity of LogL_X^{2-10keV} ~42.3 erg/s
- L_y/L_X < 0.25%

- Most significant in power-law analysis, comparable significance in both flux assumptions.
- Also seen in hard X-ray catalog*
 *See talks by <u>Tomas (Aug 26)</u> and <u>Sreetama (Aug 29)</u>

18

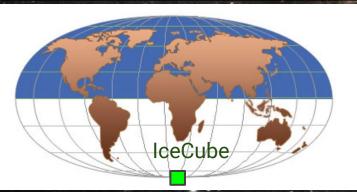

Northern Sky Result: Stacking

	spectral model	$n_{ m exp}$	\mathbf{TS}	$\hat{n}_{ m s}$	$\hat{\gamma}$	$p_{ m local}$	$p_{ m global}$	$n_{ m UL}$
Stacking Searches								
Stacking (excl.)	disk-corona	154	0.1	5	_	$2.4 imes 10^{-1} (0.7 \sigma)$	$2.4 imes 10^{-1} (0.7 \sigma)$	51.1
Stacking (incl.) $(*)$	disk-corona	199	11.2	77	-	$1.1 imes 10^{-4} (3.7 \sigma)$	_	128

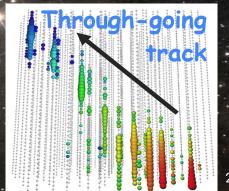
- No significant emission is found in the stacking search excluding NGC 1068.
- The upper limit constrains the collective emission to ~30% of the expectation.

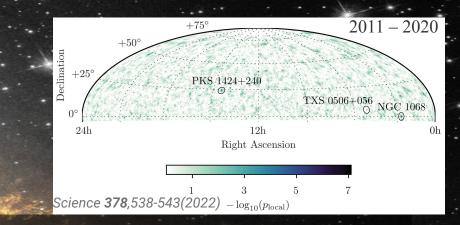
Disk-corona Model

- Neutrino flux predictions based on the High CR pressure scenario of the disk-corona model.
 - Most promising for identification with current data.
- Thermal X-ray luminosity serves as the proxy of CR injection and neutrino emission: $L_v \propto L_v \propto L_{CR}$
 - Spectra normalized by CR pressure.
 - CR injection function: $F_{p, inj} \propto f_{inj} L_{X-ray}$
 - Injection fraction: CR to thermal ratio
 - $f_{\rm inj} \propto {\rm P_{CR}}/{\rm P_{th}}$
 - CR to thermal pressure ratio

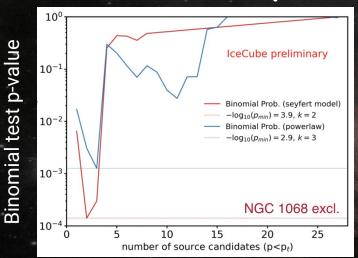

RESEARCH

RESEARCH ARTICLE


Evidence for neutrino emission from the nearby active galaxy NGC 1068


IceCube Collaboration*+

Motivation: NGC 1068



Earth absorption helps removing muon background

Northern Sky Result: Binomial Test

 The significance of observing an excess of k sources with local p-values below or equal to a chosen threshold p_k for the two flux assumptions analyzed.

Optimized to search for a smaller number of emitters in a source list.

Larger significance with the model fit
 2.9σ excess in the binomial test using model fit

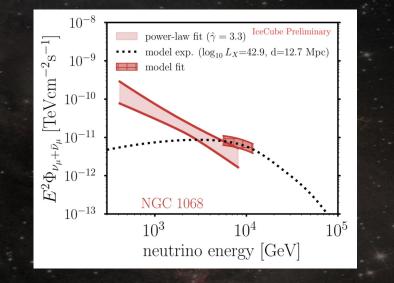
 k=2: CGCG 420-015 and NGC 4151
 2.7σ of post-trial significance

 *Would be 4σ if NGC 1068 was included

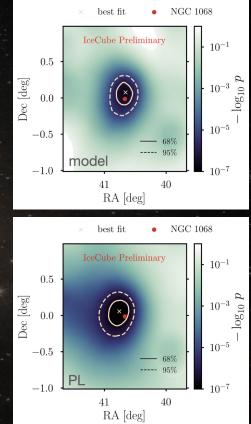
Northern Sky Result: Discussions

- It's possible that some Seyfert galaxies have similar flux to NGC 1068 but not all. More flux assumptions (extending to high-energy) can be tested with next-generation neutrino telescopes (Gen-2, for example).
- Intrinsic X-ray flux measurements have large uncertainties on galaxies with high column densities, which affect neutrino expectations and weights in stacking.
 - e.g. for NGC 1068, NuSTAR & XMM-Newton report higher L_{X-ray} than BASS, which leads to more moderate CR pressure which will reduce the expectations of other sources.
 - Need more studies on the multi-wavelength emission to find more sources and verify the neutrino flux models.

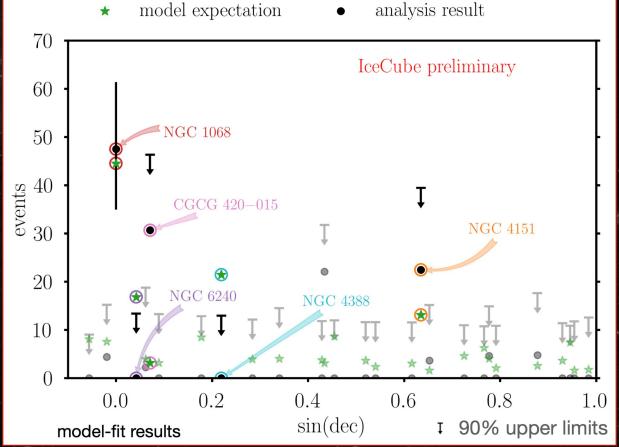
Northern Sky Results

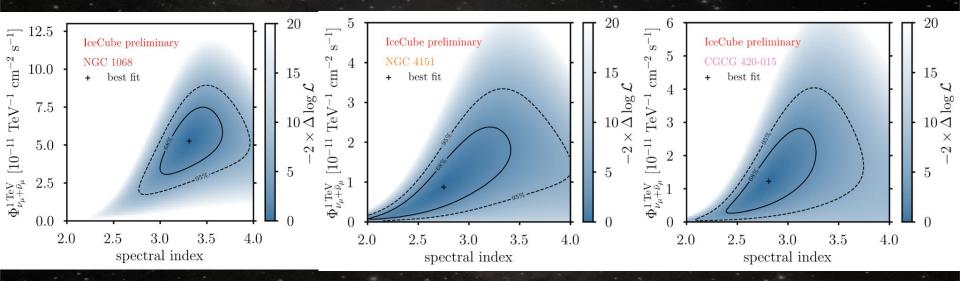

Intrinsic X-ray flux is $F_{2-10\text{keV}}^{\text{intr}} \times 10^{-12} \text{erg cm}^{-2} \text{ s}^{-1}$

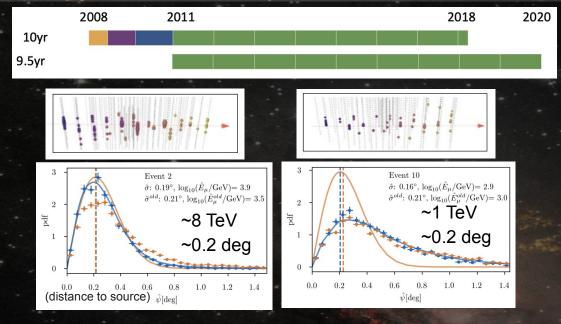
upper limit fluxes


 $\phi_{90\%}^{-\gamma} (E/1\text{TeV})^{-\gamma} \times 10^{-13} \,\text{TeV}^{-1} \text{cm}^{-2} \,\text{s}^{-1}$

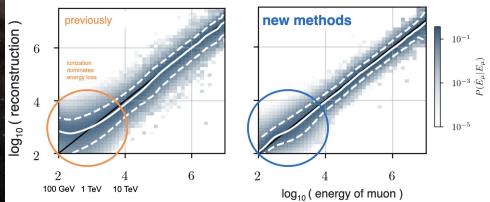
					model					powerlaw		
Source	DEC	RA	$F_{2-10 \mathrm{keV}}^{\mathrm{intr}}$	n_{exp}	$\hat{n}_{ m s}$	$-\log_{10}p$	$n_{ m UL}$	\hat{n}_s	$\hat{\gamma}$	$-\log_{10}p$	$\phi^{E^{-2}}_{90\%}$	$\phi^{E^{-3}}_{90\%}$
NGC 1068	-0.0	40.7	268.3	44.5	47.5	6.5	61.4	94.1	3.3	7.1	8.5	39.0
NGC 4388	12.7	186.4	71.7	21.4	0.0	0.0	13.0	2.0	1.9	0.9	3.9	16.7
NGC 6240	2.4	253.2	411.1	16.8	0.0	0.0	13.4	0.0	4.3	0.0	1.5	5.8
NGC 4151	39.4	182.6	84.8	13.1	22.5	3.2	39.5	30.1	2.7	3.2	10.9	38.7
Z164-19	27.0	221.4	179.5	8.6	0.0	0.0	12.0	3.3	2.0	0.7	4.2	15.7
UGC 11910	10.2	331.8	157.5	8.5	0.0	0.0	12.9	6.4	4.3	0.3	2.2	8.5
NGC 5506	-3.2	213.3	115.6	8.1	0.0	0.0	9.0	0.0	1.6	0.0	1.9	6.4
NGC 1194	-1.1	46.0	117.8	7.6	4.4	0.6	15.2	27.7	3.7	0.9	2.9	13.1
Mrk3	71.0	93.9	113.6	7.4	0.0	0.0	10.9	0.0	4.3	0.0	4.4	11.4
MCG+8-3-18	50.1	20.6	99.4	6.3	0.0	0.0	10.8	0.0	4.3	0.0	3.3	9.3
UGC 3374	46.4	88.7	65.1	4.6	0.0	0.0	11.0	0.0	4.3	0.0	3.2	9.0
NGC 3227	19.9	155.9	37.2	4.0	0.0	0.0	14.5	0.0	1.7	0.0	2.1	6.8
4C+50.55	51.0	321.2	97.0	4.0	4.6	0.8	14.9	9.7	3.2	0.5	5.0	15.9
NGC 7682	3.5	352.3	47.9	4.0	2.3	0.7	18.8	0.0	4.3	0.0	1.6	6.2
IRAS05078 + 1626	16.5	77.7	46.1	4.0	0.0	0.0	12.2	0.0	4.3	0.0	2.0	6.9
2MASXJ20145928 + 2523010	25.4	303.7	78.6	3.8	0.0	0.0	11.9	0.0	4.3	0.0	2.3	7.6
Mrk 1040	31.3	37.1	40.6	3.7	0.0	0.0	11.7	32.9	4.3	0.9	5.1	19.1
LEDA136991	68.4	6.4	42.6	3.7	0.0	0.0	11.4	3.8	4.1	0.2	5.0	13.4
Mrk 1210	5.1	121.0	32.9	3.2	0.0	0.0	13.3	0.0	4.3	0.0	1.7	6.4
CGCG 420-15	4.1	73.4	50.5	3.2	30.7	3.6	46.4	35.5	2.8	2.5	5.2	25.9
MCG+4-48-2	25.7	307.1	31.6	3.1	22.1	2.3	31.8	45.2	3.2	2.1	7.2	29.0
3C111	38.0	64.6	61.5	3.1	0.0	0.0	11.6	15.7	4.3	0.5	4.2	13.6
UGC 5101	61.4	144.0	45.4	2.6	4.8	1.0	17.6	8.7	3.0	0.7	6.9	21.7
3C382	32.7	278.8	49.4	2.4	0.0	0.0	11.6	34.9	4.3	1.0	5.4	20.1
Mrk 110	52.3	141.3	34.4	2.1	0.0	0.0	10.9	0.0	4.3	0.0	3.4	9.6
3C 390.3	79.8	280.5	44.4	1.8	0.0	0.0	12.6	0.0	4.3	0.0	6.9	19.7
NGC 3516	72.6	166.7	30.7	1.6	0.0	0.0	11.8	30.0	4.3	0.6	8.8	26.0
Cygnus A	40.7	299.9	32.1	1.6	3.7	0.7	15.2	2.9	2.1	0.7	5.3	18.2


Northern Sky Result: NGC 1068

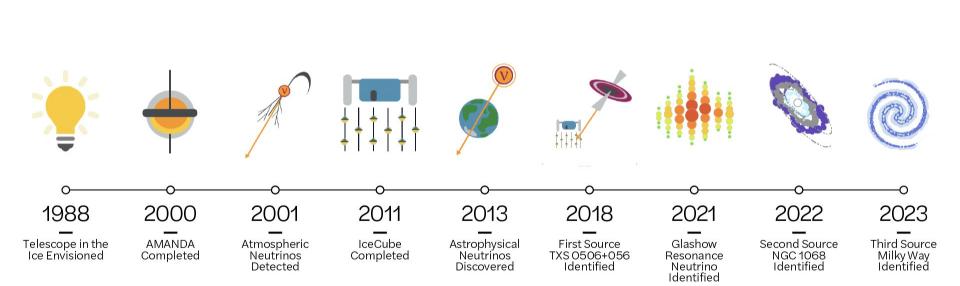

- ~14 Mpc ● <u>~10⁷ M</u>⊙
- X-ray luminosity of LogL_x^{2-10keV} ~42.9 erg/s


Northern Sky Results

Likelihood Scans


Profile likelihood scans for the flux parameters for the top sources with the power-law fit.

NGC 1068


better modeling of directional distributions of individual neutrinos in particular well reconstructed events (at TeV energies)

energy reconstruction: neural network provides more accurate and more precise energy estimates especially at TeV energies

A History of Neutrino Astronomy in Antarctica

