DM & IMBHS with Fermi-LAT

In prep.

Milena Crnogorčević (she/her) Postdoctoral Fellow Oskar Klein Centre/Stockholm University

TeVPA University of Chicago August 28, 2024

Dark Matter (DM) spikes

(cold, particle) black hole

Astrophysical Processes

adiabatic growth of a black hole embedded within a dark matter halo (see, e.g., Gondolo & Silk 1999)

High Density Fluctuations

such as (primordial) black holes formed in the early Universe (see, e.g., Bertschinger 1985)

DM halo

Dark Matter (DM) spikes

What? black holes, $M_{IMBH} = 10^2 - 10^6 M_{\odot}$

Why? missing link between stellar-mass and supermassive BHs

Where? globular clusters, nuclei of low-mass galaxies, outskirts of large galaxies

dynamical measurements, X-ray observations of accretion, gravitational lensing, gravitational wave emission, optical lines (BPT), radio emission from AGN, Fe coronal lines... ~ 100 candidates

(see, e.g., Greene & Ho 2005, Reines et al. 2013 & 2019, Birchall et al. 2020, Sacchi et al. 2024)

Search for <u>DM annihilation signals</u> from highly concentrated DM regions, i.e., <u>spikes</u>, surrounding <u>IMBHs</u> using <u>Fermi-LAT</u> data

Why?

Less Crowded Environments

IMBHs are typically in less dense regions compared to SMBHs, reducing background contamination

Simpler Accretion Dynamics

IMBHs have less complex accretion processes, making it easier to distinguish DM-related emissions.

Cross-Correlation Analysis

Utilizing the unresolved gamma-ray background (UGRB) and a mock catalog of IMBHs to identify spatial correlations indicative of DM annihilation

Individual/Stacking Analysis

Potential to detect gamma-ray emission that is individually below Fermi-LAT's sensitivity threshold

XX ±SP DM YY ±SP IMBHS

··· a recipe for disaster???

··· a recipe for y-rays!

M. Crnogorčević – Dark Matter & IMBHs – TeVPA, University of Chicago, 08/28/2024

Obligatory slide on Fermi Large Area Telescope

e⁺e⁻ pair-conversion telescope

*Energy range ******Field of View *******Single photon angular resolution < 1 deg at 1 GeV Timing accuracy 1 microsecond

20 MeV to > 300 GeV2.4 sr (\sim 1/5 of the whole sky)

ideally suited for WIMP searches* **whole sky every ~3 hours *point-source localization <0.5 arcmin

individual γ rays convert into e⁺e⁻ pairs \rightarrow tracks (localization) & deposited energy

... it also detects electrons.

1st approach: Cross-correlation

Cross-correlation Analysis: Intro Slide

well-known technique used to characterize the sub-threshold gamma-ray sky.

Two-point cross-correlation function (CCF) $CCF(\theta) = \left\langle \delta \Phi_{\nu}(\bar{n}) \delta \Phi_{\nu}(\bar{n}') \right\rangle$ measures the excess probability, above the expectation from a random distribution, of finding an object in a volume dV_A at a separation r from an object (or overdensity) in a volume dV_B .

Cross-correlation angle power spectrum (CAPS)

 $\sum \frac{2l+1}{4\pi} C_l^{(\gamma\nu)} P_l[\cos(\theta)]$

Gamma-ray DM Spikes from EAGLE simulations

- coordinates and DM spike parameters for ~2500 IMBHs in ~150 Milky Waylike galaxies.
- Assumes adiabatic processes for IMBH formation and distribution (astrophysical processes)
 - DM Spike profile: NFW

(Aschersleben et al. 2024)

Fermi data

- Fermi all-sky
- Excluding 4FGL-DR4, Roma BZCAT, CRATES, WIBRaLS2, Galactic Plane
- 15 years of Fermi data
- PSF 1+2+3
- SOURCEVETO
- 500 MeV to 500 GeV
- Standard *Fermi* analysis

EAGLE x Fermi

using code developed in [Negro, MC, et al. (2023)], relying on PolSpice https://www2.iap.fr/users/hivon/software/PolSpice/

EAGLE x Fermi

Not accounting distance Conservative mask

M. Crnogorčević – Dark Matter & IMBHs – TeVPA, University of Chicago, 08/28/2024

2nd approach: <u>Stacking dwarf AGNs</u>

eROSITA data

- West hemisphere with eROSITA
- Identified 74
 AGN-IMBH
 pairs within 200
 Mpc
- About 50% of the sample are off-nuclear

(Sacchi et al. 2024)

Gamma-rays from dwarf AGN

• [see the next talk by Rodrigo Nemmen]

• DM annihilation

Fermi Analysis

- Standard Fermi analysis
- 15 years of *Fermi* data
- 500 MeV to 500 GeV
- 4FGL-DR4 Source catalog
- Construct TS profiles assuming power law
- No significant detection for any of the 74 sources

Stacking Analysis

DM constraints

- IMBHs are promising candidates for detecting DM signatures due to their unique environments and simpler dynamics.
- While the cross-correlation analysis did not yield significant detections, it provided constraints that will inform future searches
- Assumptions: luminosity function of IMBHs, IMBHs halo density profiles...
- AGN dwarfs: stacking of eROSITA likely IMBHs yields no detection
- Upper limit calculations in progress

