Aggressively-Dissipative Dark Dwarfs Simulating & Modelling Atomic Dark Matter in Dwarf Galaxies

Sandip Roy

Princeton University

with C. Gemmell, X. Shen, J. Barron, M. Lisanti, D. Curtin, N. Murray, P. F. Hopkins Arxiv: 2304.09878 (Ap.J. Letters) & 2311.02148 (Ap.J.) & 2408.15317

TeVPA - University of Chicago - August 2024

Motivation

Sandip Roy (2408.15317)

Motivation

Planck Collaboration (1807.06209)

Sandip Roy (2408.15317)

Need to test collisionless, CDM paradigm on subgalactic scales

TeVPA - U.Chicago - August 2024

Planck Collaboration (1807.06209)

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Need to test collisionless, CDM paradigm on subgalactic scales

Dark sectors are theoretically motivated (hierarchy problem, Hubble tension, etc.)

Planck Collaboration (1807.06209)

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Need to test collisionless, CDM paradigm on subgalactic scales

Dark sectors are theoretically motivated (hierarchy problem, Hubble tension, etc.)

Dark sectors can comprise dissipative subfractions

Planck Collaboration (1807.06209)

Sandip Roy (2408.15317)

- Need to test collisionless, CDM paradigm on subgalactic scales
- Dark sectors are theoretically motivated (hierarchy problem, Hubble tension, etc.)
- Dark sectors can comprise dissipative subfractions
- <u>Goal</u>: Investigate effects of basic, dissipative dark sector model (atomic dark matter) in dwarf

Atomic Dark Matter (aDM) Galactic Morphology

Sandip Roy (2408.15317)

Atomic Dark Matter (aDM) Galactic Morphology

Sandip Roy (2408.15317)

Atomic Dark Matter (aDM) Galactic Morphology

Sandip Roy (2408.15317)

Fan et al. (1303.1521), Ghalsasi et al. (1712.04779), Kramer et al. (1604.01407), Schutz et al. (1711.03103), Buch et al. (1808.05603), Widmark et al. (2105.14030)

Atomic Dark Matter (aDM) Galactic Morphology

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Fan et al. (1303.1521), Ghalsasi et al. (1712.04779), Kramer et al. (1604.01407), Schutz et al. (1711.03103), Buch et al. (1808.05603), Widmark et al. (2105.14030)

Atomic Dark Matter (aDM) Galactic Morphology

We simulated aDM in dwarf galaxies

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Fan et al. (1303.1521), Ghalsasi et al. (1712.04779), Kramer et al. (1604.01407), Schutz et al. (1711.03103), Buch et al. (1808.05603), Widmark et al. (2105.14030)

Atomic Dark Matter (aDM) Galactic Morphology

We simulated aDM in dwarf galaxies Fairly complicated? Aggressively-cooling is actually simple!

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Talk Outline

Overview of aDM physics aDM parameter space explored Final results

TeVPA - U.Chicago - August 2024

Atomic Dark Matter Intro & Simulation Setup

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

X

CMB

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

No dark nuclear physics \rightarrow No dark stars \rightarrow No dark supernovae (SN) \rightarrow <u>No dark feedback</u>

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

X CMB A aDM ۲<mark>۲</mark>DM

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Hopkins et al. (1409.7395 & 1702.06148); S. Roy et al. (2304.09878)

Sandip Roy (2408.15317)

Hopkins et al. (1409.7395 & 1702.06148); S. Roy et al. (2304.09878)

Sandip Roy (2408.15317)

Hopkins et al. (1409.7395 & 1702.06148); S. Roy et al. (2304.09878)

aDM Cooling Processes

Sandip Roy (2408.15317)

Simulation Parameters

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Varied cooling rate over several orders of magnitude, $E'_{\rm b}$ kept constant

Varying Cooling Strength & Binding Energy

Sandip Roy (2408.15317)

Varied cooling rate over several orders of magnitude, $E'_{\rm b}$ kept constant

Varying Cooling Strength & Binding Energy

Sandip Roy (2408.15317)

Varied cooling rate over several orders of magnitude, $E'_{\rm b}$ kept constant

Varied $E_{\rm b'}/E_{\rm b}$ between 0.1 and 0.5

Varying Cooling Strength & Binding Energy

Sandip Roy (2408.15317)

Varied cooling rate over several orders of magnitude, $E'_{\rm h}$ kept constant

Varied $E_{\rm b'}/E_{\rm b}$ between 0.1 and 0.5

Kept f' = 6% and $m_{p'} = m_p$

Final Results

Fiducial CDM and aDM Morphology

Sandip Roy (2408.15317)

Fiducial CDM and aDM Morphology

Sandip Roy (2408.15317)

Fiducial CDM and aDM Morphology

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

aDM Gas (face-on) z = 0

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

They agree to a factor ≤ 2

Almost identical inner slope

They agree to a factor $\lesssim 2$

Almost identical inner slope

Slower cooling aDM is less dense

Sandip Roy (2408.15317)

They agree to a factor ≤ 2

Almost identical inner slope

Slower cooling aDM is less dense

Aggressive cooling -> inner equilibrium

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

 $\rho_{\rm dm}(r) = \rho'_{\rm adm\,clump}(r) + \rho_{\rm cdm}(r)$

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

$$\rho_{\rm dm}(r) = \rho'_{\rm ac}$$

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

 $\dim \operatorname{clump}(r) + \rho_{\rm cdm}(r)$

$$\rho_{\rm dm}(r) = \rho'_{\rm adm\,clump}(r) + \rho_{\rm cdm}(r)$$

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

6% aDM: the inner densities increase a lot!

6% aDM: the inner densities increase a lot!

Aggressive-cooling: universal density profiles

6% aDM: the inner densities increase a lot!

Aggressive-cooling: universal density profiles

Will constrain aDM w/ dwarf velocities

Sandip Roy (2408.15317)

 10^{2} $V_{\rm circ} \, [{\rm km/s}]$ Ŧ superfast fast-f12% Observed field dwarfs 10° 10^{0} 10^{1} 10^{-1} Radial Distance [kpc]

6% aDM: the inner densities increase a lot!

Aggressive-cooling: universal density profiles

Will constrain aDM w/ dwarf velocities

Other interesting observables are welcome! (21-cm, see Jared's talk! Lyman-Alpha, see Caleb's talk!)

Supplementary Slides

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

 $\log_{10}(\beta'_{\rm cool})$

Sandip Roy (2408.15317)

 $\log_{10}(\beta'_{\rm cool})$

Effect of $m_{p'}$ and f' on β'_{cool} Contour

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Clumps begin forming at high redshift

Clumps begin forming at high redshift

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Clumps begin forming at high redshift

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Cooling and Collapse at High Redshift

Clumps begin forming at high redshift

Rapid aDM cooling occurs at high redshift

Sandip Roy (2408.15317)

Cooling and Collapse at High Redshift

Clumps begin forming at high redshift

Rapid aDM cooling occurs at high redshift

Sandip Roy (2408.15317)

Cooling and Collapse at High Redshift

Clumps begin forming at high redshift

Rapid aDM cooling occurs at high redshift

Equilibration of aDM in aggressivelydissipative regime

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

 $ho_0' \propto f'$

Sandip Roy (2408.15317)

 $\rho'_{\rm adm}(r) = \rho'_0 \left(\frac{r}{r'_s}\right)^{-\gamma} \left(1 + \left(\frac{r}{r'_s}\right)^2\right)^{-(p-1)/2}$

 $\rho_0' \propto f'$

Sandip Roy (2408.15317)

 $\rho_{\rm adm}'(r) = \rho_0' \left(\frac{r}{r_s'}\right)^{-\gamma} \left(1 + \left(\frac{r}{r_s'}\right)^2\right)^{-(p)}$

 $\rho_0' \propto f'$

 $\rho_0 \propto (1 - f')$

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Zoom-In Simulations

Sandip Roy (2408.15317)

Zoom-In Simulations

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Zoom-In Simulations

Sandip Roy (2408.15317)

Initial Conditions/Cosmology Modified Einstein-Boltzmann Solver (CLASS)

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Initial Conditions/Cosmology Modified Einstein-Boltzmann Solver (CLASS)

Dark recombination

 $\delta G_{\mu\nu} = 8\pi G \left(\delta T^{\mu\nu} + \delta T^{\mu\nu}_{ADM} \right)$

TeVPA - U.Chicago - August 2024

Initial Conditions/Cosmology Modified Einstein-Boltzmann Solver (CLASS)

Dark recombination

Based on Barron et al. (2212.02487), Bansal et al. (2110.04317) & Cyr-Racine et al. (1209.5752)

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Instability Criterion:

1/2 $\sim \frac{1}{R} \cdot \left(\frac{kT}{m_{p'}G\rho} \right)$ $1/\sqrt{G\rho}$ < 1 R/c_s

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Instability Criterion:

1/2 $\frac{kT}{m_{p'}G\rho}$ $1/\sqrt{G\rho}$ < 1 R/c_s

Sandip Roy (2408.15317)

Instability Criterion:

1/2 $\sim \frac{1}{R} \cdot \left(\frac{kT}{m_{p'}G\rho} \right)$ $1/\sqrt{G\rho}$ < 1 R/c_s

ADM gas→Clump

Caveat: Baryons have more criteria (fixed $ho_{
m star}$, molecular, etc.)

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Instability Criterion:

1/2 $1/\sqrt{G\rho}$ $\frac{1}{R} \cdot \left(\frac{kT}{m_{p'}G\rho} \right)$ < 1 R/c_s R

ADM gas→Clump

Ionisation-Recombination Equilibrium

Given a neutral gas cell with temp T, what is the ionisation fraction?

If $t_{\text{ionise, recombine}} \ll t_{\text{dynamical}}$ and define $x_i = n_i/n_{\text{H}'}$ where $n_{\text{H}'} = n_{\text{p}'} + n_{\text{H}'_0}$ and $n_{e'} = n_{p'}$ then can assume $\langle \sigma_{\text{ionise}} v \rangle x_{e'} x_{H'_0} \approx \langle \sigma_{\text{recombine}} v \rangle x_{e'} x_{p'}$

 $x_{e'} = \frac{\langle \sigma_{\text{ionise}} v \rangle}{\langle \sigma_{\text{ionise}} v \rangle + \langle \sigma_{\text{recombine}} v \rangle}$

Sandip Roy (2408.15317)

$$x_{\mathrm{H}_{0}^{\prime}} = \frac{\langle \sigma_{\mathrm{recombine}} v \rangle}{\langle \sigma_{\mathrm{ionise}} v \rangle + \langle \sigma_{\mathrm{recombine}} v \rangle}$$

Cooling Rate with Varying ADM Parameters

Sandip Roy (2408.15317)

Sandip Roy (2408.15317)

Inner Slope Evolution

Sandip Roy (2408.15317)

aDM Clump Velocity Anisotropy

Sandip Roy (2408.15317)

Clump Formation History

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

Is the Sim Even Resolved?

Sandip Roy (2408.15317)

Effect of ξ'

Sandip Roy (2408.15317)

Effect of ξ'

Sandip Roy (2408.15317)

Morphology Metrics

		~					,	,		
Simulation	aDM Particle Type	ĩ	$Z_{9/10}$	$R_{9/10}$	$Z_{1/2}$	$R_{1/2}$	z_0'	z_{90}^{\prime}	$f'_{\rm gas}(0.5{ m kpc})$	$f_{ m gas}^{\prime}(5{ m kpc})$
superfast	clumps	0.63	0.27	1.1	0.078	0.31	11.1	1.3	0.02	0.5
	gas	0.91	0.14	4.1	0.038	1.2	-	-		
fast	clumps	0.63	0.25	0.86	0.065	0.23	10.7	0.6	0.09	0.6
	gas	0.84	0.22	3.1	0.030	0.65	-	-		
slow	clumps	0.49	0.26	0.65	0.081	0.20	9.5	2.7	0.02	0.9
	gas	no gas disk				-	-	0.02	0.0	
fast-f12%	clumps	0.61	0.37	1.6	0.098	0.36	10.9	0.8	0.03	0.4
	gas	0.92	0.17	4.0	0.059	1.5	-	-		
superfast-m10v	clumps	0.38	0.61	1.5	0.11	0.24	7.2	0.3	0.04	0.2
	gas	0.82	0.25	5.6	0.053	0.86	-	-		
fast-Ebindlow	clumps	0.65	0.31	1.4	0.084	0.35	15.2	0.7	0.01	0.2
	gas	0.88	0.11	3.2	0.035	1.4	-	-		
superfast-Ebindlow	clumps	0.61	0.32	1.8	0.088	0.31	15.5	0.9	0.001	0.2
	gas	0.92	0.17	6.6	0.070	2.91	-	-	0.001	

the aDM clumps form and the redshift by which 90% of these aDM clumps form.

Table D1. Morphology metrics for the aDM clumps and aDM gas in the central halos of all the simulations in this suite. The metrics $\tilde{\epsilon}$, $Z_{9/10}$, $R_{9/10}$, $Z_{1/2}$, $R_{1/2}$, and f'_{gas} are all defined in the main text (see Sec. 4). The metrics z'_0 and z'_{90} focus on the aDM clumps in the region $r \leq 50 \,\mathrm{kpc}$ of the halo at z = 0. They respectively correspond to the redshift at which the first of

"Vanilla" Baryonic Physics Baryon Gas

Sandip Roy (2408.15317)

Simulation videos are viewable at rb.gy/et2q0

Baryon Stars

"Vanilla" Baryonic Physics Baryon Gas

Sandip Roy (2408.15317)

Simulation videos are viewable at rb.gy/et2q0

Baryon Stars

Sandip Roy (2408.15317)

S. Roy, et al. (2304.09878); C. Gemmell, S. Roy, et al. (2311.02148)

CDM (face-on): z = 0

 $\log(\Sigma_{
m cdm}\,[{
m M}_{\odot}/{
m kpc}^2])$ 10 kpc

Sandip Roy (2408.15317)

S. Roy, et al. (2304.09878); C. Gemmell, S. Roy, et al. (2311.02148)

CDM (face-on): z = 0

Sandip Roy (2408.15317)

TeVPA - U.Chicago - August 2024

S. Roy, et al. (2304.09878); C. Gemmell, S. Roy, et al. (2311.02148)

ADM Gas (face-on): z = 0

We broke the Milky Way :)

Sandip Roy (2408.15317)

S. Roy, et al. (2304.09878); C. Gemmell, S. Roy, et al. (2311.02148)

ADM Gas (face-on): z = 0

CDM

MW Morphology z = 0

Baryon Gas (face-on): z = 0

Sandip Roy (2408.15317)

CDM

CDM (face-on): z = 1

) kpc ⊣ <	$\frac{\log(\Sigma_{\rm cdm}[{\rm M}_\odot)}{5}$	/kj
Baryon	Gas (face-on):	Z =

Sandip Roy (2408.15317)

MW Gas Evolution

Sandip Roy (2408.15317)

NW Morphology Metrics

	CDM Baryons		CDM-NF Baryons		ADM-1				ADM-2			
					Baryons		ADM		Baryons		ADM	
	Gas	Stars	Gas	Stars	Gas	Stars	Gas	Clumps	Gas	Stars	Gas	Clumps
$r_{1/2}[{ m kpc}]$	3.83	1.83	1.42	1.58	3.35	1.34	1.64	0.63	1.19	1.59	2.91	0.78
$z_{1/2}[{ m kpc}]$	0.039	0.28	0.035	0.22	0.022	0.17	0.014	0.14	0.022	0.21	0.015	0.18
$z_{9/10}[\mathrm{kpc}]$	0.12	0.99	0.119	1.64	0.087	0.63	0.045	0.75	0.086	0.75	0.035	0.71
$f_{ m thin}$	0.94	0.38	0.67	0.20	0.97	0.39	0.86	0.19	0.81	0.37	0.99	0.21
$f_{ m thick}$	0.05	0.39	0.32	0.53	0.03	0.40	0.14	0.57	0.18	0.45	0.01	0.52
$f_{ m spheroid}$	0.01	0.23	0.01	0.27	0.00	0.21	0.00	0.24	0.01	0.18	0.00	0.27
$ ilde{f}$	0.95	0.71	0.95	0.51	0.96	0.71	0.98	0.53	0.96	0.68	0.97	0.50

Table E1. value of the iterative calculation.

A table of morphology metrics for the baryonic stars and ADM clumps in CDM, CDM-NF, ADM-1, and ADM-2. $r_{1/2}, z_{1/2}, z_{9/10}, f_{\text{thin}}, f_{\text{thick}}, \text{ and } f_{\text{spheroid}}$ are all defined in the main text. \tilde{f} is the flatness parameter, with $\tilde{f} \to 1$ approaching a thin-disk distribution and $\tilde{f} \to 0$ approaching a spherical distribution. To obtain \tilde{f} , we compute the moment of inertia tensor of the stars or ADM clumps in the central 10 kpc of the galaxy and compare the values to that of a uniform ellipsoid, obtaining its effective triaxial dimensions. We then repeat the process with particles within the derived ellipsoid boundaries until the boundary values converge to within 10%. Flatness is then defined as f = 1 - c/a, where a (c) is the final semi-major (semi-minor)

MW Orbital Circularities

Method based on Abadi et al. (0212282)

Sandip Roy (2408.15317)

MW Central Density Evolution

Sandip Roy (2408.15317)

MW Central ADM Evolution (ADM-1) **ADM Gas**

Sandip Roy (2408.15317)

Simulation videos are viewable at rb.gy/et2q0

ADM Clumps

MW Central ADM Evolution (ADM-1) **ADM Gas**

Sandip Roy (2408.15317)

Simulation videos are viewable at rb.gy/et2q0

ADM Clumps

MW Central ADM Evolution (ADM-2) **ADM Gas**

Sandip Roy (2408.15317)

Simulation videos are viewable at <u>rb.gy/et2q0</u>

ADM Clumps

z = 3.92

MW Central ADM Evolution (ADM-2) **ADM Gas**

Sandip Roy (2408.15317)

Simulation videos are viewable at <u>rb.gy/et2q0</u>

ADM Clumps

z = 3.92

