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THE STANDARD PARADIGM OF
SHOCK ACCELERATION

Protons and electrons are accelerated via diffusive shock
acceleration (DSA).*
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THE STANDARD PARADIGM OF
GALACTIC CR ACCELERATION

DSA predicts power law distributions of particles.*
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*Fermi54, Krymskii77, Axford+77, Bell78, Blandford+78
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THE STANDARD PARADIGM OF
SHOCK ACCELERATION

DSA is a universal acceleration mechanism!
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THE PROBLEM WITH DSA

Observations point toward CR acceleration with spectra steeper than E2 (i.e., q > 2).

1. y-ray emission from Galactic SNRs suggest 2.2 < g < 2.6.
e.g., Caprioli11, Giordano+12, Saha+14, Aharonian+19

2. Radio emission from young extragalactic SNe (radio SNe) suggest q = 3.
e.g., Chevalier+06, Chevalier+17, Soderberg+10, Soderberg+12, Kamble+16, Terreran+19

3. Observations of Galactic CRs require 2.3 S g < 2.4.
e.g., Evoli+19
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STEEP SPECTRA IN SIMULATIONS

Kinetic simulations performed in Haggerty+20 and Caprioli+20 naturally reproduce
steep spectra.
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THE "POSTCURSOR”

Magnetic fluctuations generated by cosmic rays (CRs) in the
upstream retain their inertia over a non-negligible distance
when advected into the downstream.
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MODELING CR ACCELERATION

Calculate the CR proton spectrum by solving the Parker transport equation.

Assume a fraction n of particles crossing the shock are injected into DSA.

Advection Diffusion Adiabatic compression Injection
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MODELING CR ACCELERATION

Calculate the CR proton spectrum by solving the Parker transport equation.

To include a postcursor, we consider {i(x), the velocity of magnetic scattering centers.

Advection Diffusion Adiabatic compression Injection
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MODELING CR ACCELERATION

Use a semi-analytic model of non-linear DSA which self-consistently accounts for
particle acceleration and magnetic field amplification.

Solve a transport equation for

Solve a transport equation for
magnetic turbulence.

nonthermal particles.
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Solve equations for conservation
of mass, energy, and momentum.

See also Amato+06, Caprioli+10; Caprioli12.

REBECCA DIESING




MODELING CR ACCELERATION

Use a semi-analytic model of non-linear DSA which self-consistently accounts for
particle acceleration and magnetic field amplification.

This model calculates the instantaneous proton spectrum,

f(x,p), at each timestep. These spectra can be converted to
electron spectra and weighted to account for energy losses.

See also Amato+06, Caprioli+10; Caprioli12.
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MAGNETIC FIELD AMPLIFICATION

We model magnetic field amplification by assuming contributions from both the
resonant streaming instability* and the non-resonant (Bell) instability.**

Solve the transport
equation for magnetic
turbulence.

For fast shocks characteristic of
SNRs, the Bell instability dominates

Solve a transport
equation for nonthermal
particles.
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Solve equations for
consewaqtion e fast shocks = steep spectra

energy, and momentum.
*e.g., Kulsrud+69, Skilling75, Bell78, Lagage+83; **Bell04
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A TYPICAL
PROTON
SPECTRUM

For a Tycho-like SNR with an initial
energy of 105" erg injecting 1 Mo
into a medium with particle
density 1 cm-3, we reproduce
spectra that are consistently

steeper than E-2. -
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Radio (10 GHz)

Millimeter (300 GHz)
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RADIATIVE SUPERNOVA REMNANTS

Hydrodynamic models predict the formation of a dense shell near the end of an
SNR’s life (after a few tens of thousands of years). This shell formation gives rise to

observable nonthermal signatures, including a significant rebrightening.
Diesing+24 (in review)
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e === photons; t=1.0e+05 yr, r=5e-02 kpc /i Fermi LAT Data
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Credit: ESO/WFI; MPFIR/ESO/APEX/A: Weiss et al. ; NASA/CXC/CFA/ReKraft et al.
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NOVAE

A self-consistent model for particle acceleration requires multiple shock
components to fit the gamma-ray data from RS Ophiuchi.
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SUMMARY

1.

We developed a fast, multi-zone framework for particle
acceleration, including microphysical effects such as
magnetic field amplification and shock modification.

The inclusion of these effects (e.g., the postcursor) may
resolve key tensions between theory and observations.

Proper modeling of cosmic ray acceleration can reveal
the evolution and environments surrounding supernova
remnants, novae, winds blown by supermassive black
holes, and more.
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